Summary
"Proteins—the building blocks of natural systems—offer advantageous structural properties for the design of functional materials and present rare and modest but appealing electrical conduction features. The e-Prot project vision encompasses the rational design of efficient conductive protein systems (e-Ps), and the fabrication of all-protein based conductive structures and materials, targeting a radical change in design of ""green"" electronic and energy storage devices. This breakthrough relies on a multidisciplinary scientific approach that combines i) a profound understanding of protein building blocks, biomolecular design principles, state-of-the-art synthetic biology, and chemical tools, to systematically fabricate new protein materials; and ii) cutting-edge characterization techniques and computational models that will provide an unprecedented fundamental understanding of protein conduction thus building a solid foundation for their technological implementation. Selected engineered conductive proteins will be upscaled and implemented as smart ink-based conductors and ionic electrolytes in energy storage devices, as a first demonstration of the feasibility of an inherently biocompatible and fully sustainable all-protein (e-Prot) bioelectronics platform. This groundbreaking approach surpasses current bio-inspired technologies, transforming the emerging research field of protein-based bioelectronics, currently still limited to basic research, to a new level of sophistication facilitating real-world applications.
"
"
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/964593 |
Start date: | 01-09-2021 |
End date: | 31-08-2025 |
Total budget - Public funding: | 3 103 460,00 Euro - 3 103 460,00 Euro |
Cordis data
Original description
"Proteins—the building blocks of natural systems—offer advantageous structural properties for the design of functional materials and present rare and modest but appealing electrical conduction features. The e-Prot project vision encompasses the rational design of efficient conductive protein systems (e-Ps), and the fabrication of all-protein based conductive structures and materials, targeting a radical change in design of ""green"" electronic and energy storage devices. This breakthrough relies on a multidisciplinary scientific approach that combines i) a profound understanding of protein building blocks, biomolecular design principles, state-of-the-art synthetic biology, and chemical tools, to systematically fabricate new protein materials; and ii) cutting-edge characterization techniques and computational models that will provide an unprecedented fundamental understanding of protein conduction thus building a solid foundation for their technological implementation. Selected engineered conductive proteins will be upscaled and implemented as smart ink-based conductors and ionic electrolytes in energy storage devices, as a first demonstration of the feasibility of an inherently biocompatible and fully sustainable all-protein (e-Prot) bioelectronics platform. This groundbreaking approach surpasses current bio-inspired technologies, transforming the emerging research field of protein-based bioelectronics, currently still limited to basic research, to a new level of sophistication facilitating real-world applications."
Status
SIGNEDCall topic
FETOPEN-01-2018-2019-2020Update Date
27-04-2024
Images
No images available.
Geographical location(s)