SYNCH | A SYnaptically connected brain-silicon Neural Closed-loop Hybrid system

Summary
The brain, with its remarkable computational properties, provides animals with capabilities of physical autonomy, interaction and adaptation that are unmatched by any artificial system. The brain is a complex network that has evolved to optimize processing of real-world inputs by relying on event-based signaling and self-reorganizing connectivity. Spikes (the events) are transmitted between neurons through synapses which undergo continuous ‘birth’-‘death’ and adjustment, reconfiguring brain circuits and adapting processing to ever changing inputs.
The scientific and technological objective of the project is to create a hybrid system where a neural network in the brain of a living animal (BNN) and a silicon neural network of spiking neurons on a chip (SNN) are interconnected by neuromorphic synapses, thus enabling co-evolution of connectivity and co-processing of information of the two networks
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/824162
Start date: 01-01-2019
End date: 30-06-2023
Total budget - Public funding: 4 277 868,75 Euro - 4 149 612,00 Euro
Cordis data

Original description

The brain, with its remarkable computational properties, provides animals with capabilities of physical autonomy, interaction and adaptation that are unmatched by any artificial system. The brain is a complex network that has evolved to optimize processing of real-world inputs by relying on event-based signaling and self-reorganizing connectivity. Spikes (the events) are transmitted between neurons through synapses which undergo continuous ‘birth’-‘death’ and adjustment, reconfiguring brain circuits and adapting processing to ever changing inputs.
The scientific and technological objective of the project is to create a hybrid system where a neural network in the brain of a living animal (BNN) and a silicon neural network of spiking neurons on a chip (SNN) are interconnected by neuromorphic synapses, thus enabling co-evolution of connectivity and co-processing of information of the two networks

Status

SIGNED

Call topic

FETPROACT-01-2018

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.2. FET Proactive
H2020-FETPROACT-2018-2020
FETPROACT-01-2018 FET Proactive: emerging paradigms and communities