DESTINATION | AI-enabled RNA nanotechnology DElivery SysTem for INformATION transfer into cells.

Summary
By combining the interdisciplinary fields of AI/machine learning with RNA nanotechnology, biochemistry and advanced imaging methods, DESTINATION aims to create a first-generation RNA-based delivery platform (RNano) for effective delivery of information such as mRNA into cells in vivo. mRNA translate the information encoded in a cell’s DNA into the proteins that are essential for diverse cell function and can be deficient in disease. Administering mRNA into a cell could enable diverse novel functions such as production of its own medicine by replacing the faulty mRNA or engineering cells to fight diseases from genetic disorders and cancer to infectious diseases. However, the ability to deliver mRNA to specific cells in a targeted organ remains an unmet challenge that limits its clinical and commercial potential. Addressing this challenge requires a novel, biocompatible and scalable system capable of (1) protecting the mRNA from degradation in blood; (2) evading the immune response; (3) and providing high selectivity for targeted cells. DESTINATION will generate an intelligent library of (a) programmable RNano scaffolds for attachment of packaged mRNA and (b) RNA aptamers for laser-specific internalization of RNanos into cells. Promising candidates will be tested in vitro, with lead candidates progressed to novel animal models. Ultra high-resolution imaging will allow for the evaluation of the technology, with an iterative R&D approach aimed at demonstrating 3breakthrough preclinical proof-of-concepts incl. in the attractive field of CAR-T cancer immune-therapies. DESTINATION comprises a multi-disciplinary consortium of top academics and 3 R&D-performing SMEs acting as commercialization agents to increase DESTINATION’s impact by developing a translation strategy and communication plan focused on providing early engagement with investors, regulators, potential manufacturing and industry partners. Together, DESTINATION will strengthen EU's position in the emerging fields of RNA technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899833
Start date: 01-04-2021
End date: 31-03-2025
Total budget - Public funding: 3 381 888,75 Euro - 3 381 888,00 Euro
Cordis data

Original description

By combining the interdisciplinary fields of AI/machine learning with RNA nanotechnology, biochemistry and advanced imaging methods, DESTINATION aims to create a first-generation RNA-based delivery platform (RNano) for effective delivery of information such as mRNA into cells in vivo. mRNA translate the information encoded in a cell’s DNA into the proteins that are essential for diverse cell function and can be deficient in disease. Administering mRNA into a cell could enable diverse novel functions such as production of its own medicine by replacing the faulty mRNA or engineering cells to fight diseases from genetic disorders and cancer to infectious diseases. However, the ability to deliver mRNA to specific cells in a targeted organ remains an unmet challenge that limits its clinical and commercial potential. Addressing this challenge requires a novel, biocompatible and scalable system capable of (1) protecting the mRNA from degradation in blood; (2) evading the immune response; (3) and providing high selectivity for targeted cells. DESTINATION will generate an intelligent library of (a) programmable RNano scaffolds for attachment of packaged mRNA and (b) RNA aptamers for laser-specific internalization of RNanos into cells. Promising candidates will be tested in vitro, with lead candidates progressed to novel animal models. Ultra high-resolution imaging will allow for the evaluation of the technology, with an iterative R&D approach aimed at demonstrating 3breakthrough preclinical proof-of-concepts incl. in the attractive field of CAR-T cancer immune-therapies. DESTINATION comprises a multi-disciplinary consortium of top academics and 3 R&D-performing SMEs acting as commercialization agents to increase DESTINATION’s impact by developing a translation strategy and communication plan focused on providing early engagement with investors, regulators, potential manufacturing and industry partners. Together, DESTINATION will strengthen EU's position in the emerging fields of RNA technology.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking