QUEFORMAL | Quantum Engineering for Machine Learning

Summary
We propose the radical vision of a new integrated circuit technology for machine learning where low-voltage field-effect transistors and non-volatile memories are integrated next to each other exploiting quantum engineering of heterostructures of two-dimensional materials (2DMs), i.e. the atom-by-atom design and fabrication of devices which combine vertical and lateral heterostructures (VH and LH, respectively) of 2DMs.

QUEFORMAL pursues a very risky and original proposed solution, with the extremely high potential gain of advancing a science-enabled technology for the fabrication of integrated circuits for machine learning, in a field in which Europe has a strong basic-science leadership, thanks to the pioneering breakthroughs on graphene and 2D materials.

The overall objective and targeted breakthrough of QUEFORMAL is to experimentally demonstrate the fabrication and operation of devices based on LH and VH of 2DMs for logic-in-memory integrated circuits and to show the potential of this technology for the fabrication of integrated circuits for machine learning. Devices include i) lateral heterostructure FETs (LH-FETs) operating at low voltage (0.6 V) fabricated in close vicinity to ii) floating-gate non-volatile memories based on VHs for the gate stack and LHs for the channel (LVH-NVMs), that can be programmed at low voltage (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/829035
Start date: 01-01-2019
End date: 31-12-2022
Total budget - Public funding: 2 988 740,00 Euro - 2 988 740,00 Euro
Cordis data

Original description

We propose the radical vision of a new integrated circuit technology for machine learning where low-voltage field-effect transistors and non-volatile memories are integrated next to each other exploiting quantum engineering of heterostructures of two-dimensional materials (2DMs), i.e. the atom-by-atom design and fabrication of devices which combine vertical and lateral heterostructures (VH and LH, respectively) of 2DMs.

QUEFORMAL pursues a very risky and original proposed solution, with the extremely high potential gain of advancing a science-enabled technology for the fabrication of integrated circuits for machine learning, in a field in which Europe has a strong basic-science leadership, thanks to the pioneering breakthroughs on graphene and 2D materials.

The overall objective and targeted breakthrough of QUEFORMAL is to experimentally demonstrate the fabrication and operation of devices based on LH and VH of 2DMs for logic-in-memory integrated circuits and to show the potential of this technology for the fabrication of integrated circuits for machine learning. Devices include i) lateral heterostructure FETs (LH-FETs) operating at low voltage (0.6 V) fabricated in close vicinity to ii) floating-gate non-volatile memories based on VHs for the gate stack and LHs for the channel (LVH-NVMs), that can be programmed at low voltage (

Status

CLOSED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking