NANOSTACKS | Nanostack printing for materials research

Summary
When compared to fossil fuels only one decisive disadvantage remains for electricity from solar cells and wind mills, namely the difficulty to store this energy in very large quantities and in high energy density. State of the art batteries have a low energy density, and, in addition, cannot handle the needed quantities of energy. In principle, fuel cells could store huge quantities of energy and in in high energy density, but these are not very efficient and, moreover, rely on expensive materials. We want to develop a novel screening method to find efficient fuel cells that rely on cheap materials. KIT developed a novel multi-material nano3D printer that generates ~40.000 nanostacks per glass slide with freely chosen sequential arrangements of printed nanolayers that are made of nanoparticles or organic materials. We want to use this robot to print conductors, isolators, diodes, battery-, fuel cell-, and LED-materials, and then screen ~15.000 twin-nanostacks per glass slide for function. We will start with diodes that are made of a ZnO layer on top of ITO nanoparticles. When positioned in between two capacitor plates, an AC current will drive electrons unidirectional through all of these nanostack-diodes from where they travel back through the adjacent twin nanostack. If this twin nanostack is a functional battery, reduced battery materials are identified in a scanner, while functional LED nanostacks identify themselves through emitted light. Functional LED- or battery-nanostacks will then be used to identify those nanostacks that work as a fuel cell. We think that this new method will advance materials research beyond the screening for novel energy materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/951949
Start date: 01-08-2020
End date: 31-07-2024
Total budget - Public funding: 4 021 750,00 Euro - 3 992 000,00 Euro
Cordis data

Original description

When compared to fossil fuels only one decisive disadvantage remains for electricity from solar cells and wind mills, namely the difficulty to store this energy in very large quantities and in high energy density. State of the art batteries have a low energy density, and, in addition, cannot handle the needed quantities of energy. In principle, fuel cells could store huge quantities of energy and in in high energy density, but these are not very efficient and, moreover, rely on expensive materials. We want to develop a novel screening method to find efficient fuel cells that rely on cheap materials. KIT developed a novel multi-material nano3D printer that generates ~40.000 nanostacks per glass slide with freely chosen sequential arrangements of printed nanolayers that are made of nanoparticles or organic materials. We want to use this robot to print conductors, isolators, diodes, battery-, fuel cell-, and LED-materials, and then screen ~15.000 twin-nanostacks per glass slide for function. We will start with diodes that are made of a ZnO layer on top of ITO nanoparticles. When positioned in between two capacitor plates, an AC current will drive electrons unidirectional through all of these nanostack-diodes from where they travel back through the adjacent twin nanostack. If this twin nanostack is a functional battery, reduced battery materials are identified in a scanner, while functional LED nanostacks identify themselves through emitted light. Functional LED- or battery-nanostacks will then be used to identify those nanostacks that work as a fuel cell. We think that this new method will advance materials research beyond the screening for novel energy materials.

Status

SIGNED

Call topic

FETPROACT-EIC-05-2019

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.2. FET Proactive
H2020-FETPROACT-2019-2020
FETPROACT-EIC-05-2019 FET Proactive: emerging paradigms and communities