SOUNDofICE | Sustainable Smart De-Icing by Surface Engineering of Acoustic Waves

Summary
Icing on surfaces is commonplace in nature and industry and too often causes catastrophic events. SOUNDofICE ultimate goal is to overcome costly and environmentally harmful de-icing methods with a pioneering strategy based on the surface engineering of MHz Acoustic Waves for a smart and sustainable removal of ice. This technology encompasses the autonomous detection and low-energy-consuming removal of accreted ice on any material and geometry. For the first time, both detection and de-icing will share the same operating principle. The visionary research program covers modeling of surface wave atom excitation of ice aggregates, integration of acoustic transducers on large areas and the development of surface engineering solutions to stack micron-size interdigitated electrodes together with different layers providing efficient wave propagation, anti-icing capacity, and aging resistance. We will demonstrate that this de-icing strategy surpasses existing methods in performance, multifunctionality and capacity of integration on industrially relevant substrates as validated with proof of concept devices suited for the aeronautic and wind power industries. SOUNDofICE high-risks will be confronted by a strongly interdisciplinary team from five academic centers covering both the fundamental and applied aspects. Two SMEs with first-hand experience in icing will be in charge of testing this technology and its future transfer to key EU players in aeronautics, renewable energy, and household appliances. An Advisory Board incorporating relevant companies will contribute to an effective dissemination and benchmarking. Flexibility of the R&D plan, multidisciplinarity and assistance of the AdB guarantee the success of this proposal, bringing up a unique opportunity for young academia leaders and SMEs from five different countries to strengthen the EU position on a high fundamental and technological impact field, just on the moment when the climate issues are of maxima importance
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899352
Start date: 01-11-2020
End date: 30-04-2025
Total budget - Public funding: 4 240 226,25 Euro - 4 207 626,00 Euro
Cordis data

Original description

Icing on surfaces is commonplace in nature and industry and too often causes catastrophic events. SOUNDofICE ultimate goal is to overcome costly and environmentally harmful de-icing methods with a pioneering strategy based on the surface engineering of MHz Acoustic Waves for a smart and sustainable removal of ice. This technology encompasses the autonomous detection and low-energy-consuming removal of accreted ice on any material and geometry. For the first time, both detection and de-icing will share the same operating principle. The visionary research program covers modeling of surface wave atom excitation of ice aggregates, integration of acoustic transducers on large areas and the development of surface engineering solutions to stack micron-size interdigitated electrodes together with different layers providing efficient wave propagation, anti-icing capacity, and aging resistance. We will demonstrate that this de-icing strategy surpasses existing methods in performance, multifunctionality and capacity of integration on industrially relevant substrates as validated with proof of concept devices suited for the aeronautic and wind power industries. SOUNDofICE high-risks will be confronted by a strongly interdisciplinary team from five academic centers covering both the fundamental and applied aspects. Two SMEs with first-hand experience in icing will be in charge of testing this technology and its future transfer to key EU players in aeronautics, renewable energy, and household appliances. An Advisory Board incorporating relevant companies will contribute to an effective dissemination and benchmarking. Flexibility of the R&D plan, multidisciplinarity and assistance of the AdB guarantee the success of this proposal, bringing up a unique opportunity for young academia leaders and SMEs from five different countries to strengthen the EU position on a high fundamental and technological impact field, just on the moment when the climate issues are of maxima importance

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking