AMAPOLA | A Marketable Polymer based Al-S battery

Summary
AMAPOLA will foster the developments achieved in the FET-Open SALBAGE project, towards real applications and towards market. The focus will be put in turning the promising research results obtained in SALBAGE into genuine technological innovations demonstrating that Al-S based batteries can have a place in certain market niches as a new future technology on batteries.

The project is founded in the combination of sulfur and aluminium in a battery, what is especially attractive because of the very high abundance of both elements. The Al-S cell has the potential to store very high energy, and very high prospective values of energy density of 660 Wh/l and specific energy of 400 Wh/kg are calculated at a cell level, taking advantage of the incorporation of novel solid Polymer Gel Electrolytes (PGEs) based on novel highly conductive and inexpensive Deep Eutectic Solvents (DES) for a cheaper, lighter, tougher and safer battery concept.

In AMAPOLA project the focus will be put in:
1- further develop the materials proposed in SALBAGE with special emphasis in (i) the preparation of controlled-phase gel electrolytes from highly conductive novel DES; (ii) the development of advanced cathode formulations to achieve high sulfur loading and high sulfur utilisation in the cathode in combination with new promising redox mediators and (iii) strategies to overcome the presence of oxide layer in the aluminium anode.
2- in up-scaling and extrapolation towards real application
3- pre-industrialization and market aspects.

To succeed in the high demanding tasks, most part of the former consortium that have shown outstanding competence and remarkable level of commitment in SALBAGE is present in AMAPOLA together with a world recognised battery company and an SME expert in IPR managent and transfer to market.
Results, demos, etc. Show all and search (18)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/951902
Start date: 01-10-2020
End date: 31-03-2023
Total budget - Public funding: 2 000 345,00 Euro - 2 000 345,00 Euro
Cordis data

Original description

AMAPOLA will foster the developments achieved in the FET-Open SALBAGE project, towards real applications and towards market. The focus will be put in turning the promising research results obtained in SALBAGE into genuine technological innovations demonstrating that Al-S based batteries can have a place in certain market niches as a new future technology on batteries.

The project is founded in the combination of sulfur and aluminium in a battery, what is especially attractive because of the very high abundance of both elements. The Al-S cell has the potential to store very high energy, and very high prospective values of energy density of 660 Wh/l and specific energy of 400 Wh/kg are calculated at a cell level, taking advantage of the incorporation of novel solid Polymer Gel Electrolytes (PGEs) based on novel highly conductive and inexpensive Deep Eutectic Solvents (DES) for a cheaper, lighter, tougher and safer battery concept.

In AMAPOLA project the focus will be put in:
1- further develop the materials proposed in SALBAGE with special emphasis in (i) the preparation of controlled-phase gel electrolytes from highly conductive novel DES; (ii) the development of advanced cathode formulations to achieve high sulfur loading and high sulfur utilisation in the cathode in combination with new promising redox mediators and (iii) strategies to overcome the presence of oxide layer in the aluminium anode.
2- in up-scaling and extrapolation towards real application
3- pre-industrialization and market aspects.

To succeed in the high demanding tasks, most part of the former consortium that have shown outstanding competence and remarkable level of commitment in SALBAGE is present in AMAPOLA together with a world recognised battery company and an SME expert in IPR managent and transfer to market.

Status

CLOSED

Call topic

FETPROACT-EIC-06-2019

Update Date

27-04-2024
Images
No images available.
Geographical location(s)