CIRCULAR VISION | Circular DNA in diagnosis and disease models

Summary
Many human diseases, including cancers and inflammatory disorders, are associated with the production of ‘circular DNA’ from chromosomes. These molecules have potential as biomarkers, and in the case of cancers are potential drivers of disease progression. However, the technology for detecting circular DNA and for creating disease models is lacking, meaning we cannot explore their potential use in diagnostics. CIRCULAR VISIONs goal is to explore the new opportunities circular DNA creates in early diagnosis and monitoring of disease, particularly screening, and to create an experimental system to understand the link between disease and circular DNA.

CIRCULAR VISION will explore this brand new territory by creating highly sensitive whole genome screens for circular DNA that correlate with disease, using lung cancer (LC) and inflammatory bowel disease (IBD) as model examples. We develop and combine novel methods in molecular biology, microfluidics, DNA sequencing and bioinformatics in order to identify new diagnostic markers. Such markers for IBD and LC will then be adapted to clinical diagnosis and prognosis using advanced image analysis and cytometry methods. Finally, CIRCULAR VISION will show the causal link between circular DNA and cancer, by producing disease models with oncogenes on circular DNA.

CIRCULAR VISION assembles key pioneers in the emerging field of circular DNA with leading clinical experts and key commercial players in cytometry and genomics. We are convinced that our technology has broad applications in early noninvasive diagnosis of cancer and monitoring of inflammatory diseases. We believe our technology will lay the foundation for future research into circular DNA biology and spur future drug development.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899417
Start date: 01-10-2020
End date: 31-03-2024
Total budget - Public funding: 4 195 697,50 Euro - 3 998 822,00 Euro
Cordis data

Original description

Many human diseases, including cancers and inflammatory disorders, are associated with the production of ‘circular DNA’ from chromosomes. These molecules have potential as biomarkers, and in the case of cancers are potential drivers of disease progression. However, the technology for detecting circular DNA and for creating disease models is lacking, meaning we cannot explore their potential use in diagnostics. CIRCULAR VISIONs goal is to explore the new opportunities circular DNA creates in early diagnosis and monitoring of disease, particularly screening, and to create an experimental system to understand the link between disease and circular DNA.

CIRCULAR VISION will explore this brand new territory by creating highly sensitive whole genome screens for circular DNA that correlate with disease, using lung cancer (LC) and inflammatory bowel disease (IBD) as model examples. We develop and combine novel methods in molecular biology, microfluidics, DNA sequencing and bioinformatics in order to identify new diagnostic markers. Such markers for IBD and LC will then be adapted to clinical diagnosis and prognosis using advanced image analysis and cytometry methods. Finally, CIRCULAR VISION will show the causal link between circular DNA and cancer, by producing disease models with oncogenes on circular DNA.

CIRCULAR VISION assembles key pioneers in the emerging field of circular DNA with leading clinical experts and key commercial players in cytometry and genomics. We are convinced that our technology has broad applications in early noninvasive diagnosis of cancer and monitoring of inflammatory diseases. We believe our technology will lay the foundation for future research into circular DNA biology and spur future drug development.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking