CyGenTiG | Cypergenetic Tissue Engineering

Summary
This project addresses a serious bottleneck to the widespread availability of engineered tissues for clinical use: Currently, building of new tissues requires inefficient, manual manipulation that is time-consuming, labour-intensive and introduces high variability in the finished products. Relieving this limitation has implications for both health and wealth. The project will capitalize on the skills of its network of laboratories to build and demonstrate a technology for controlling the development of engineered tissues by optogenetics and closed-loop, self-correcting control. The core technology combines machine vision and computer modelling with optical feedback, through which the computer can alter the behaviour of precisely those cells that need to be stimulated/inhibited, for the tissue to develop toward the planned template. Optical sensitivity will be conferred on cells by synthetic biological techniques. One set of demonstrations will manipulate the growth and differentiation of these cells directly. A more advanced set will use light-sensitive production of signalling molecules by engineered cells to connect optical control to the control of normal, non-engineered cells as could be used for clinical tissue engineering, in 2- and in 3-dimensional systems. Our proposal includes plans for dissemination and academic, industrial and social impacts.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/801041
Start date: 01-10-2018
End date: 31-03-2024
Total budget - Public funding: 4 696 250,00 Euro - 4 696 250,00 Euro
Cordis data

Original description

This project addresses a serious bottleneck to the widespread availability of engineered tissues for clinical use: Currently, building of new tissues requires inefficient, manual manipulation that is time-consuming, labour-intensive and introduces high variability in the finished products. Relieving this limitation has implications for both health and wealth. The project will capitalize on the skills of its network of laboratories to build and demonstrate a technology for controlling the development of engineered tissues by optogenetics and closed-loop, self-correcting control. The core technology combines machine vision and computer modelling with optical feedback, through which the computer can alter the behaviour of precisely those cells that need to be stimulated/inhibited, for the tissue to develop toward the planned template. Optical sensitivity will be conferred on cells by synthetic biological techniques. One set of demonstrations will manipulate the growth and differentiation of these cells directly. A more advanced set will use light-sensitive production of signalling molecules by engineered cells to connect optical control to the control of normal, non-engineered cells as could be used for clinical tissue engineering, in 2- and in 3-dimensional systems. Our proposal includes plans for dissemination and academic, industrial and social impacts.

Status

SIGNED

Call topic

FETOPEN-01-2016-2017

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2016-2017
FETOPEN-01-2016-2017 FET-Open research and innovation actions