STRUCTURED | Sprayable, Thin & RobUst Carbon Nanofiber ComposiTe for JUmping DRopwisE ConDensation

Summary
This proposal focuses on providing a roadmap towards upscaling and commercialization of promising results obtained during the FET Innovation program HARMoNIC (grant No 801229). In particular, the coordinator partner (ETH Zurich) has developed a nanocomposite material to be coated on metallic steam condensers used in thermal power generation. The coating is composed of a mixture of polytetrafluoroethylene and carbon nanofibers and is superhydrophobic (i.e. minimal affinity to liquid water). The optimal wettability of the coating ensures that condensed droplets, even smaller than 100 μm, coalesce and spontaneously jump off the surface. Additionally, the coating is very thin (~ 2 μm) so that it has minimal thermal resistance for heat transfer. As a result, it shows a 9-fold improvement in heat transfer coefficient compared to conventional steam condensers wherein the steam condenses as an undesirable continuous liquid film. Moreover, our coating is highly robust and is the first one to sustain coalescence induced droplet jumping behavior over extended time periods under accelerated aging conditions involving exposure to hot steam flow. This enhanced mode of condensation, if maintained long enough, can provide a new direction on how future industrial condensers will be designed. We expect that such thermodynamically efficient condensers will have an immense socio-economic impact by reducing the fossil fuel consumption of thermal power plants and minimizing the associated emission of greenhouse gases. With this proposal, we plan to set the foundation for the commercialization of this technology by accomplishing the next three major steps to be followed. These are: 1) further material optimization beyond the state-of-the-art demonstration, 2) scaling up of the fabrication procedure and implementation of the technology to industrial condensers, and 3) developing a business plan and setting up a spin-off company while attracting venture capital.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101034816
Start date: 01-10-2021
End date: 31-03-2023
Total budget - Public funding: - 100 000,00 Euro
Cordis data

Original description

This proposal focuses on providing a roadmap towards upscaling and commercialization of promising results obtained during the FET Innovation program HARMoNIC (grant No 801229). In particular, the coordinator partner (ETH Zurich) has developed a nanocomposite material to be coated on metallic steam condensers used in thermal power generation. The coating is composed of a mixture of polytetrafluoroethylene and carbon nanofibers and is superhydrophobic (i.e. minimal affinity to liquid water). The optimal wettability of the coating ensures that condensed droplets, even smaller than 100 μm, coalesce and spontaneously jump off the surface. Additionally, the coating is very thin (~ 2 μm) so that it has minimal thermal resistance for heat transfer. As a result, it shows a 9-fold improvement in heat transfer coefficient compared to conventional steam condensers wherein the steam condenses as an undesirable continuous liquid film. Moreover, our coating is highly robust and is the first one to sustain coalescence induced droplet jumping behavior over extended time periods under accelerated aging conditions involving exposure to hot steam flow. This enhanced mode of condensation, if maintained long enough, can provide a new direction on how future industrial condensers will be designed. We expect that such thermodynamically efficient condensers will have an immense socio-economic impact by reducing the fossil fuel consumption of thermal power plants and minimizing the associated emission of greenhouse gases. With this proposal, we plan to set the foundation for the commercialization of this technology by accomplishing the next three major steps to be followed. These are: 1) further material optimization beyond the state-of-the-art demonstration, 2) scaling up of the fabrication procedure and implementation of the technology to industrial condensers, and 3) developing a business plan and setting up a spin-off company while attracting venture capital.

Status

CLOSED

Call topic

FETOPEN-03-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-03-2018-2019-2020 FET Innovation Launchpad