Summary
DROP-IT proposes combining optoelectronics and photonics in a single flexible drop-on demand inkjet technology platform by means of exploiting the enormous potential of lead-free perovskite (LFP) materials. Specifically, novel crystalline structures beyond conventional ABX3 LFP (double-perovskites and rudorffites) will be computationally screened and chemically synthesized with superior properties as LFPs proposed in the literature. A(Sn-Ge)X3 (A=organic,Cs; X=Cl,Br,I) materials will be considered for initial benchmark devices. The future of DROP-IT technology is envisioned at long-term in the fields of photovoltaics, lighting and printed integrated photonics. This will be possible by developing highly innovative fabrication routes (inkjet printing towards Roll-to-Roll) of LFP pioneering materials (in bulk and nanoscale) by low-cost, high throughput, sustainable, large-scale fabrication techniques on flexible substrates (PET, f.e.) to revolutionize future power, lighting and communication systems. DROP-IT major novelty relies on the innovative use of newly synthesized LFPs in combination with the use of affordable, mask-less, drop on demand inkjet printing onto flexible substrates. The targeted breakthroughs towards the long-term vision of our technology will be based on the following challenges: (1) Theoretical screening of different LFP compound families and chemical synthesis of most suitable ones in the form of nanocrystals and polycrystalline thin films, (2) Formulation of specific and suitable inks of these materials for (3) Inkjet printing of thin films on flexible substrates and (4) Development of stable optoelectronic and photonic devices (solar cells with 12-15% and LEDs with 14-18% efficiencies, amplifiers-lasers with low threshold) as proofs-of-concept for a future technology based on new inorganic LFPs and charge transport layers. DROP-IT is supported by a strong and interdisciplinary consortium with complementary expertise to achieve these objectives.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/862656 |
Start date: | 01-11-2019 |
End date: | 30-04-2023 |
Total budget - Public funding: | 3 461 345,00 Euro - 3 461 344,00 Euro |
Cordis data
Original description
DROP-IT proposes combining optoelectronics and photonics in a single flexible drop-on demand inkjet technology platform by means of exploiting the enormous potential of lead-free perovskite (LFP) materials. Specifically, novel crystalline structures beyond conventional ABX3 LFP (double-perovskites and rudorffites) will be computationally screened and chemically synthesized with superior properties as LFPs proposed in the literature. A(Sn-Ge)X3 (A=organic,Cs; X=Cl,Br,I) materials will be considered for initial benchmark devices. The future of DROP-IT technology is envisioned at long-term in the fields of photovoltaics, lighting and printed integrated photonics. This will be possible by developing highly innovative fabrication routes (inkjet printing towards Roll-to-Roll) of LFP pioneering materials (in bulk and nanoscale) by low-cost, high throughput, sustainable, large-scale fabrication techniques on flexible substrates (PET, f.e.) to revolutionize future power, lighting and communication systems. DROP-IT major novelty relies on the innovative use of newly synthesized LFPs in combination with the use of affordable, mask-less, drop on demand inkjet printing onto flexible substrates. The targeted breakthroughs towards the long-term vision of our technology will be based on the following challenges: (1) Theoretical screening of different LFP compound families and chemical synthesis of most suitable ones in the form of nanocrystals and polycrystalline thin films, (2) Formulation of specific and suitable inks of these materials for (3) Inkjet printing of thin films on flexible substrates and (4) Development of stable optoelectronic and photonic devices (solar cells with 12-15% and LEDs with 14-18% efficiencies, amplifiers-lasers with low threshold) as proofs-of-concept for a future technology based on new inorganic LFPs and charge transport layers. DROP-IT is supported by a strong and interdisciplinary consortium with complementary expertise to achieve these objectives.Status
CLOSEDCall topic
FETOPEN-01-2018-2019-2020Update Date
27-04-2024
Images
No images available.
Geographical location(s)