DNA-FAIRYLIGHTS | DNA-Fast light dRiven data technologY with multiplexed optical encoding and readout

Summary
Modern society has an ever-increasing need for long-term, high density data encoding and storage. DNA technology allows to store data at unprecedented density, and functionalized DNA integrates digital bits placed along a single strand to encode information, which is available at low cost with natural (not-synthetic) DNA. DNA-FAIRYLIGHTS will raise this concept of functionalized natural DNA for data encoding and storage to a completely new level by decorating DNA carriers with a precise sequence of metallic nanomaterials with well-defined optical responses. These hybrid DNA structures will allow for direct optical readout, and the different resonance wavelengths will allow to go far beyond (0,1) encoding. In DNA-FAIRYLIGHTS we will design ultrasmall plasmonic and light-emitting particles with at least 9 different distinct optical responses that will enable multiplexed data encoding. We will develop concepts for linking/unlinking and orientational reconfiguration by external stimuli that will allow for reconfigurable memories and computation. The DNA-FAIRYLIGHTS project will provide: (i) a revolutionary technology that utilizes the DNA to arrange metallic nanomaterials in sequences with with nm precision; (ii) a novel approach to fabricate functionalized DNA that allows for integration of metal nanomaterials for data storage and manipulation; (iii) a next-generation model to encode and store information along the DNA; (iv) an optoelectronic/microfluidic system to modulate the arrangement of the metallic nanostructures along the DNA in order to dynamically control the information content; (v) readout devices with single particle sensitivity with fast response and decoding of the stored information in one functional unit. Each result of DNA-FAIRYLIGHTS will provide mile stones for novel technologies in next generation biomolecular synthesis, hybrid solid-state / biological systems, bioimaging, nanoplasmonics, DNA data storage, steganography and bio-optoelectronics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/964995
Start date: 01-09-2021
End date: 28-02-2025
Total budget - Public funding: 3 116 536,25 Euro - 3 116 536,00 Euro
Cordis data

Original description

Modern society has an ever-increasing need for long-term, high density data encoding and storage. DNA technology allows to store data at unprecedented density, and functionalized DNA integrates digital bits placed along a single strand to encode information, which is available at low cost with natural (not-synthetic) DNA. DNA-FAIRYLIGHTS will raise this concept of functionalized natural DNA for data encoding and storage to a completely new level by decorating DNA carriers with a precise sequence of metallic nanomaterials with well-defined optical responses. These hybrid DNA structures will allow for direct optical readout, and the different resonance wavelengths will allow to go far beyond (0,1) encoding. In DNA-FAIRYLIGHTS we will design ultrasmall plasmonic and light-emitting particles with at least 9 different distinct optical responses that will enable multiplexed data encoding. We will develop concepts for linking/unlinking and orientational reconfiguration by external stimuli that will allow for reconfigurable memories and computation. The DNA-FAIRYLIGHTS project will provide: (i) a revolutionary technology that utilizes the DNA to arrange metallic nanomaterials in sequences with with nm precision; (ii) a novel approach to fabricate functionalized DNA that allows for integration of metal nanomaterials for data storage and manipulation; (iii) a next-generation model to encode and store information along the DNA; (iv) an optoelectronic/microfluidic system to modulate the arrangement of the metallic nanostructures along the DNA in order to dynamically control the information content; (v) readout devices with single particle sensitivity with fast response and decoding of the stored information in one functional unit. Each result of DNA-FAIRYLIGHTS will provide mile stones for novel technologies in next generation biomolecular synthesis, hybrid solid-state / biological systems, bioimaging, nanoplasmonics, DNA data storage, steganography and bio-optoelectronics.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking