Opto silicon | Towards optical communication on silicon chips

Summary
Our vision is to integrate light-emitting devices, based on hexagonal silicon-germanium (Hex-SiGe), with existing Si electronics and passive Si-photonics circuitry. This establishes a silicon-compatible technology platform, with full opto-electronic functionality.

Silicon dominates the electronics industry for more than half a century. However, silicon, germanium and SiGe-alloys are all indirect band gap semiconductors. Their inability to efficiently emit light has adversely shaped the semiconductor industry we know today. Accordingly, achieving efficient light emission from SiGe has been a holy grail in silicon technology for decades. Hexagonal crystal phase SiGe (Hex-SiGe) recently emerged as a new direct bandgap semiconductor with excellent light emission capabilities. Hex-SiGe will provide additional functionality like light generation (light emitting diode, laser), light amplification (semiconductor optical amplifier) and efficient light detection to silicon technology.

This project will focus on:
• The growth of device quality Hex-SiGe on silicon-on-insulator (SOI).
• Demonstration of opto-electronic functionality in Hex-SiGe, including a quantum well laser.
This new technology promises strongly improved performance in computing and sensing, while simultaneously reducing cost by mass production in existing silicon foundries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/964191
Start date: 01-05-2021
End date: 30-04-2025
Total budget - Public funding: 3 753 128,75 Euro - 3 753 128,00 Euro
Cordis data

Original description

Our vision is to integrate light-emitting devices, based on hexagonal silicon-germanium (Hex-SiGe), with existing Si electronics and passive Si-photonics circuitry. This establishes a silicon-compatible technology platform, with full opto-electronic functionality.

Silicon dominates the electronics industry for more than half a century. However, silicon, germanium and SiGe-alloys are all indirect band gap semiconductors. Their inability to efficiently emit light has adversely shaped the semiconductor industry we know today. Accordingly, achieving efficient light emission from SiGe has been a holy grail in silicon technology for decades. Hexagonal crystal phase SiGe (Hex-SiGe) recently emerged as a new direct bandgap semiconductor with excellent light emission capabilities. Hex-SiGe will provide additional functionality like light generation (light emitting diode, laser), light amplification (semiconductor optical amplifier) and efficient light detection to silicon technology.

This project will focus on:
• The growth of device quality Hex-SiGe on silicon-on-insulator (SOI).
• Demonstration of opto-electronic functionality in Hex-SiGe, including a quantum well laser.
This new technology promises strongly improved performance in computing and sensing, while simultaneously reducing cost by mass production in existing silicon foundries.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking