SPARTE | Scintillating Porous Architectures for RadioacTivE gas detection

Summary
Radioactive gases are key targets for the environment, making gas monitoring an important issue. SPARTE will focus on the detection and activity measurement metrology of tracers related to nuclear activities. In this respect, the detection of 85Kr, 133Xe, 3H, 37Ar, being all emitter or electron capture radionuclides, is targeted. SPARTE will implement and achieve a radically novel radioactive gas detection and radioactivity metrology, by introducing highly porous scintillating aerogels and/or Metal-Organic Frameworks designed to dramatically extend gas-matter interaction for effective detection through scintillation. These materials after development and optimization will combine an efficient, fast and isotropic scintillation ensuring homogeneous 3D response and high sensitivity for metrology.
The goal will be to realize functional solid-based sensors generating a close intermixing between the sensor and the analyte and to combine efficiency and homogeneity. Major breakthroughs are foreseen: a calibration method for low activity range of 85Kr and 133Xe, a real time detection system of for some noble gas and 3H with a significantly improved sensitivity in an easy deployable system, a detector for 37Ar. SPARTE consortium proposes a unique combination of competences aimed at succeeding in the difficult task of pioneering a new technology track, from sensor as porous scintillator to critical radioactive gas detection and metrology method development. It covers the six critical skills - i.e. aerogels and MOFs scintillating monolith preparation, structural and scintillation characterization, ionizing radiation detection and its modeling – needed to reach our goals. The consortium combines 4 leading research centers and 2 SMEs around 3 core expertises - processing, characterization and metrology - also encompassing the industrial perspective, in order to create the interdisciplinary “substrate” necessary for a successful outcome of the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899293
Start date: 01-10-2020
End date: 31-12-2024
Total budget - Public funding: 2 909 631,25 Euro - 2 909 631,00 Euro
Cordis data

Original description

Radioactive gases are key targets for the environment, making gas monitoring an important issue. SPARTE will focus on the detection and activity measurement metrology of tracers related to nuclear activities. In this respect, the detection of 85Kr, 133Xe, 3H, 37Ar, being all emitter or electron capture radionuclides, is targeted. SPARTE will implement and achieve a radically novel radioactive gas detection and radioactivity metrology, by introducing highly porous scintillating aerogels and/or Metal-Organic Frameworks designed to dramatically extend gas-matter interaction for effective detection through scintillation. These materials after development and optimization will combine an efficient, fast and isotropic scintillation ensuring homogeneous 3D response and high sensitivity for metrology.
The goal will be to realize functional solid-based sensors generating a close intermixing between the sensor and the analyte and to combine efficiency and homogeneity. Major breakthroughs are foreseen: a calibration method for low activity range of 85Kr and 133Xe, a real time detection system of for some noble gas and 3H with a significantly improved sensitivity in an easy deployable system, a detector for 37Ar. SPARTE consortium proposes a unique combination of competences aimed at succeeding in the difficult task of pioneering a new technology track, from sensor as porous scintillator to critical radioactive gas detection and metrology method development. It covers the six critical skills - i.e. aerogels and MOFs scintillating monolith preparation, structural and scintillation characterization, ionizing radiation detection and its modeling – needed to reach our goals. The consortium combines 4 leading research centers and 2 SMEs around 3 core expertises - processing, characterization and metrology - also encompassing the industrial perspective, in order to create the interdisciplinary “substrate” necessary for a successful outcome of the project.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking