ARIADNE | Redefining mass spectrometry – a breakthrough platform for real-time noninvasive breath analysis with single ion detection of intact viruses and bacteria and post-analysis molecular characterization

Summary
The extraordinary ability of the coronavirus to spread in the environment has established the Covid-19 pandemic as the biggest challenge humanity faces in the XXI century. Covid-19 attacks humans regardless of age, claiming the life of over 8,000 people in a single day, with a devastating death toll exceeding 350,000 in just a few months. The virus is likely to survive for the foreseeable future and disperse further, requiring long-term planning and investment in developing means of detection, protection and cure. Protective measures based on monitoring the dispersion of the coronavirus in the environment and fast screening of individuals has become paramount for ensuring safety of our ageing population and restarting/supporting the worldwide economy. The objective of the ARIADNE project is to develop a multiple-stage analytical platform based on multi-dimensional mass spectrometry instrumentation. Performing direct and instant detection of intact virus particles in breath and in water, and going far beyond that task, this unique analytical platform will push the scientific boundaries in all aspects of analytical sciences centered on mass spectrometry, incorporating a series of potentially disruptive technologies integrated into a single system. ARIADNE integrates state-of-the-art technological advancements in breath sampling and post-ionization methods, new analytical tools for characterization of the protein content of viruses by top-down mass spectrometry, non-destructive ultra-high mass analysis of single particles followed by their soft landing and further processing based on advanced single proteomic workflows. A compact and simplified version of this versatile and powerful analytical platform is also envisaged for advancing the field of real-time breath analytics. Applications extending the analytical capabilities of the system to new viruses, intact bacteria as well as whole human cells will also become accessible.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/964553
Start date: 01-06-2021
End date: 31-05-2025
Total budget - Public funding: 3 982 000,00 Euro - 3 982 000,00 Euro
Cordis data

Original description

The extraordinary ability of the coronavirus to spread in the environment has established the Covid-19 pandemic as the biggest challenge humanity faces in the XXI century. Covid-19 attacks humans regardless of age, claiming the life of over 8,000 people in a single day, with a devastating death toll exceeding 350,000 in just a few months. The virus is likely to survive for the foreseeable future and disperse further, requiring long-term planning and investment in developing means of detection, protection and cure. Protective measures based on monitoring the dispersion of the coronavirus in the environment and fast screening of individuals has become paramount for ensuring safety of our ageing population and restarting/supporting the worldwide economy. The objective of the ARIADNE project is to develop a multiple-stage analytical platform based on multi-dimensional mass spectrometry instrumentation. Performing direct and instant detection of intact virus particles in breath and in water, and going far beyond that task, this unique analytical platform will push the scientific boundaries in all aspects of analytical sciences centered on mass spectrometry, incorporating a series of potentially disruptive technologies integrated into a single system. ARIADNE integrates state-of-the-art technological advancements in breath sampling and post-ionization methods, new analytical tools for characterization of the protein content of viruses by top-down mass spectrometry, non-destructive ultra-high mass analysis of single particles followed by their soft landing and further processing based on advanced single proteomic workflows. A compact and simplified version of this versatile and powerful analytical platform is also envisaged for advancing the field of real-time breath analytics. Applications extending the analytical capabilities of the system to new viruses, intact bacteria as well as whole human cells will also become accessible.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking