POLLOC | Polariton logic

Summary
For energy-efficient computation beyond the current CMOS paradigm, tweaking the current nanoelectronics roadmap will be neither enough nor sustainable, but requires to completely rethink transistor devices and circuits. Leveraging recent breakthroughs in perovskite nanomaterials and room-temperature exciton-polariton devices achieved by the consortium partners, we believe that now the time has come to take this beyond the scieFor energy-efficient computation beyond the current CMOS paradigm, tweaking the current nanoelectronics roadmap will be neither enough nor sustainable, but requires to completely rethink transistor devices and circuits. Leveraging recent breakthroughs in perovskite nanomaterials and room-temperature exciton-polariton devices achieved by the consortium partners, we believe that now the time has come to take this beyond the scientific publication level and build a novel technology that can leapfrog established architectures.
Within POLLOC we aim for the development of a complete technology platform for universal photonic information processing based on exciton polariton condensates in microcavities with inorganic perovskites. We will validate this new technology with respect to the key parameters power, energy-efficiency, size, frequency, and cost. In the digital processing domain, we aim for optically programmable, cascadable logic gates with less than 100 attojoule switching energy and sub-picosecond switching speed. To fulfil the requirements of this disruptive all-optical device and circuitry approach, POLLOC assembles the whole gamut of necessary expertise from chemistry, physics, theory and technology. The carefully chosen, well-balanced consortium consists of leading partners from academia, SME and large end-user with excellent track records that are uniquely positioned to tackle the ambitious goal to unleash the potential disruptive performance gains of this technology and to establish a new kind of digital and analog circuitry paradigm.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899141
Start date: 01-10-2020
End date: 30-09-2023
Total budget - Public funding: 2 739 873,75 Euro - 2 739 873,00 Euro
Cordis data

Original description

For energy-efficient computation beyond the current CMOS paradigm, tweaking the current nanoelectronics roadmap will be neither enough nor sustainable, but requires to completely rethink transistor devices and circuits. Leveraging recent breakthroughs in perovskite nanomaterials and room-temperature exciton-polariton devices achieved by the consortium partners, we believe that now the time has come to take this beyond the scieFor energy-efficient computation beyond the current CMOS paradigm, tweaking the current nanoelectronics roadmap will be neither enough nor sustainable, but requires to completely rethink transistor devices and circuits. Leveraging recent breakthroughs in perovskite nanomaterials and room-temperature exciton-polariton devices achieved by the consortium partners, we believe that now the time has come to take this beyond the scientific publication level and build a novel technology that can leapfrog established architectures.
Within POLLOC we aim for the development of a complete technology platform for universal photonic information processing based on exciton polariton condensates in microcavities with inorganic perovskites. We will validate this new technology with respect to the key parameters power, energy-efficiency, size, frequency, and cost. In the digital processing domain, we aim for optically programmable, cascadable logic gates with less than 100 attojoule switching energy and sub-picosecond switching speed. To fulfil the requirements of this disruptive all-optical device and circuitry approach, POLLOC assembles the whole gamut of necessary expertise from chemistry, physics, theory and technology. The carefully chosen, well-balanced consortium consists of leading partners from academia, SME and large end-user with excellent track records that are uniquely positioned to tackle the ambitious goal to unleash the potential disruptive performance gains of this technology and to establish a new kind of digital and analog circuitry paradigm.

Status

CLOSED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking