Summary
Quantum simulation is an emerging and exciting field for which several systems, such as ultracold-atoms, trapped ions or superconducting circuits are being actively investigated. In this project we aim to develop a novel platform for quantum simulation, based on photonic quantum fluids. Quantum fluids of light can be realised in different photonic systems with suitable nonlinearities, allowing to engineer an effective photon-photon interaction. The photon-photon interaction necessary to form a superfluid is provided by the optical nonlinearity of the medium. We will first fully characterize the superfluid and quantum turbulent regimes for quantum fluids of light, investigating the propagation in optically controlled landscapes with the demonstration of important milestones such as many-body localization and the superfluid to Mott–insulator transition. Based on these achievements and on the unprecedented flexibility offered by the all- optical control in quantum fluids of light, we will implement quantum simulations and simulate systems of very different nature, ranging from astrophysics to condensed matter. Fundamental open questions such as superconductivity, black hole physics, and quantum gravity will be addressed within the photon fluid platform.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/820392 |
Start date: | 01-10-2018 |
End date: | 31-03-2022 |
Total budget - Public funding: | 2 999 757,50 Euro - 2 999 757,00 Euro |
Cordis data
Original description
Quantum simulation is an emerging and exciting field for which several systems, such as ultracold-atoms, trapped ions or superconducting circuits are being actively investigated. In this project we aim to develop a novel platform for quantum simulation, based on photonic quantum fluids. Quantum fluids of light can be realised in different photonic systems with suitable nonlinearities, allowing to engineer an effective photon-photon interaction. The photon-photon interaction necessary to form a superfluid is provided by the optical nonlinearity of the medium. We will first fully characterize the superfluid and quantum turbulent regimes for quantum fluids of light, investigating the propagation in optically controlled landscapes with the demonstration of important milestones such as many-body localization and the superfluid to Mott–insulator transition. Based on these achievements and on the unprecedented flexibility offered by the all- optical control in quantum fluids of light, we will implement quantum simulations and simulate systems of very different nature, ranging from astrophysics to condensed matter. Fundamental open questions such as superconductivity, black hole physics, and quantum gravity will be addressed within the photon fluid platform.Status
CLOSEDCall topic
FETFLAG-03-2018Update Date
27-04-2024
Images
No images available.
Geographical location(s)