MyoChip | Building a 3D innervated and irrigated muscle on a chip.

Summary
The aim of the MyoChip project is to build a 3D human skeletal muscle irrigated by vasculature and innervated by neurons. The reconstituted 3D muscle will mirror the architecture and function found in vivo, namely in shape, contractility and microenvironment, while irrigation by a vascular network and innervation by human motor neurons will bring additional physiologic pertinence to it. This organ-on-a-chip technology will have numerous applications including but not limited to research on muscle building and aging, drug testing and screening, as well as prosthetics and biorobotics. The feasibility of the project relies on the interdisciplinary approach which joins a team of cell biologists, material engineers, experts in microfluidics and mathematical modellers. The architecture of skeletal muscle and its regenerative capabilities make muscle a prime candidate to push the 3D tissue engineering field. As such the project will lay the technical, material and methodological foundations to tackle the next generation of complex organ-on-a-chip systems that the MyoChip consortium can exploit for the generation of highly complex 3D in vitro systems of many organs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/801423
Start date: 01-11-2018
End date: 30-04-2023
Total budget - Public funding: 3 153 553,74 Euro - 3 153 553,00 Euro
Cordis data

Original description

The aim of the MyoChip project is to build a 3D human skeletal muscle irrigated by vasculature and innervated by neurons. The reconstituted 3D muscle will mirror the architecture and function found in vivo, namely in shape, contractility and microenvironment, while irrigation by a vascular network and innervation by human motor neurons will bring additional physiologic pertinence to it. This organ-on-a-chip technology will have numerous applications including but not limited to research on muscle building and aging, drug testing and screening, as well as prosthetics and biorobotics. The feasibility of the project relies on the interdisciplinary approach which joins a team of cell biologists, material engineers, experts in microfluidics and mathematical modellers. The architecture of skeletal muscle and its regenerative capabilities make muscle a prime candidate to push the 3D tissue engineering field. As such the project will lay the technical, material and methodological foundations to tackle the next generation of complex organ-on-a-chip systems that the MyoChip consortium can exploit for the generation of highly complex 3D in vitro systems of many organs.

Status

CLOSED

Call topic

FETOPEN-01-2016-2017

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2016-2017
FETOPEN-01-2016-2017 FET-Open research and innovation actions