CHIRON | Spin Wave Computing for Ultimately-Scaled Hybrid Low-Power Electronics

Summary
The future miniaturisation of electronic circuits following Moore’s law will require the introduction of increasingly disruptive
technologies to limit power consumption and optimise performance per circuit area. CHIRON envisions spin wave computing
to complement and eventually replace CMOS in future microelectronics. Spin wave computing is a paradigm-shifting
technology that uses the interference of spin waves for computation. Spin wave computing has the potential for significant
power and area reduction per computing throughput while reducing cost by alleviating lithography requirements. As a first
step towards the vision of a full spin wave computer, CHIRON envisions hybrid spin wave–CMOS circuits that can be readily
integrated alongside CMOS.
CHIRON targets a proof of principle of the essential elements for spin wave computing by an interdisciplinary approach
joining partners with expertise in material science, physics, nano-manufacturing, electrical engineering, device simulation,
and circuit design. CHIRON will fabricate basic logic gates, such as inverters and majority gates, demonstrate their
operation, and assess their performance. As transducers between the CMOS and spin wave domains in hybrid circuits,
CHIRON will develop magnetoelectric and multiferroic nanoresonators, based on nanoscale bulk acoustic resonators, which
bear promise for high energy efficiency and large output signal. The targeted lateral scale (100 nm) and resonance
frequency (>10 GHz) bring such resonators to the frontier of nano-electromechanical systems (NEMS).
This technological proof of principle is complemented by the design of digital hybrid spin wave–CMOS circuits that show the
advantages of spin wave computing and can be integrated into a CMOS environment. Based on calibrated compact device
models, the performance of these circuits in terms of power, area, and throughput will be benchmarked against CMOS to
demonstrate their viability.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/801055
Start date: 01-05-2018
End date: 30-04-2022
Total budget - Public funding: 3 745 607,50 Euro - 3 745 607,00 Euro
Cordis data

Original description

The future miniaturisation of electronic circuits following Moore’s law will require the introduction of increasingly disruptive
technologies to limit power consumption and optimise performance per circuit area. CHIRON envisions spin wave computing
to complement and eventually replace CMOS in future microelectronics. Spin wave computing is a paradigm-shifting
technology that uses the interference of spin waves for computation. Spin wave computing has the potential for significant
power and area reduction per computing throughput while reducing cost by alleviating lithography requirements. As a first
step towards the vision of a full spin wave computer, CHIRON envisions hybrid spin wave–CMOS circuits that can be readily
integrated alongside CMOS.
CHIRON targets a proof of principle of the essential elements for spin wave computing by an interdisciplinary approach
joining partners with expertise in material science, physics, nano-manufacturing, electrical engineering, device simulation,
and circuit design. CHIRON will fabricate basic logic gates, such as inverters and majority gates, demonstrate their
operation, and assess their performance. As transducers between the CMOS and spin wave domains in hybrid circuits,
CHIRON will develop magnetoelectric and multiferroic nanoresonators, based on nanoscale bulk acoustic resonators, which
bear promise for high energy efficiency and large output signal. The targeted lateral scale (100 nm) and resonance
frequency (>10 GHz) bring such resonators to the frontier of nano-electromechanical systems (NEMS).
This technological proof of principle is complemented by the design of digital hybrid spin wave–CMOS circuits that show the
advantages of spin wave computing and can be integrated into a CMOS environment. Based on calibrated compact device
models, the performance of these circuits in terms of power, area, and throughput will be benchmarked against CMOS to
demonstrate their viability.

Status

CLOSED

Call topic

FETOPEN-01-2016-2017

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2016-2017
FETOPEN-01-2016-2017 FET-Open research and innovation actions