CiViQ | Continuous Variable Quantum Communications

Summary
The goal of the CiViQ project is to open a radically novel avenue towards flexible and cost-effective integration of quantum communication technologies, and in particular Continuous-Variable QKD, into emerging optical telecommunication networks.

CiViQ aims at a broad technological impact based on a systematic analysis of telecom-defined user-requirements. To this end CiViQ unites for the first time a broad interdisciplinary community of 21 partners with unique breadth of experience, involving major telecoms, integrators and developers of QKD. The work targets advancing both the QKD technology itself and the emerging “software network” approach to lay the foundations of future seamless integration of both. The technological advantage will more specifically aim to:
- Design architectures and implement protocol extensions of flexible “software based” networks for midterm country-wide QKD reach.
- Drive CV-QKD systems and components up to TRL 6, derive standardized set of interfaces, also allowing a network-aware software defined functionality and open modular development, and pursue cost reduction by seamless integration of off-the-shelf components.
- Push CV-QKD performance boundary forward by developing high-performance photonic integrated circuits (PIC) for CV-QKD, i.e. opening the way for ultra-low cost systems, and improve further the CV-QKD hallmark coexistence capability with standard WDM channels, i.e. reducing dramatically the barriers to optical network co-integration.
- Prepare actively for next-generation networks by developing core enabling technologies and protocols aiming at quantum communication over global distances with minimal trust assumptions.

CiViQ will culminate in a validation in true telecom network environment. Project-specific network integration and software development work will empower QKD to be used as a physical-layer-anchor securing critical infrastructures, with demonstration in QKD-extended software-defined networks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/820466
Start date: 01-10-2018
End date: 31-03-2022
Total budget - Public funding: 9 974 006,25 Euro - 9 974 006,00 Euro
Cordis data

Original description

The goal of the CiViQ project is to open a radically novel avenue towards flexible and cost-effective integration of quantum communication technologies, and in particular Continuous-Variable QKD, into emerging optical telecommunication networks.

CiViQ aims at a broad technological impact based on a systematic analysis of telecom-defined user-requirements. To this end CiViQ unites for the first time a broad interdisciplinary community of 21 partners with unique breadth of experience, involving major telecoms, integrators and developers of QKD. The work targets advancing both the QKD technology itself and the emerging “software network” approach to lay the foundations of future seamless integration of both. The technological advantage will more specifically aim to:
- Design architectures and implement protocol extensions of flexible “software based” networks for midterm country-wide QKD reach.
- Drive CV-QKD systems and components up to TRL 6, derive standardized set of interfaces, also allowing a network-aware software defined functionality and open modular development, and pursue cost reduction by seamless integration of off-the-shelf components.
- Push CV-QKD performance boundary forward by developing high-performance photonic integrated circuits (PIC) for CV-QKD, i.e. opening the way for ultra-low cost systems, and improve further the CV-QKD hallmark coexistence capability with standard WDM channels, i.e. reducing dramatically the barriers to optical network co-integration.
- Prepare actively for next-generation networks by developing core enabling technologies and protocols aiming at quantum communication over global distances with minimal trust assumptions.

CiViQ will culminate in a validation in true telecom network environment. Project-specific network integration and software development work will empower QKD to be used as a physical-layer-anchor securing critical infrastructures, with demonstration in QKD-extended software-defined networks.

Status

CLOSED

Call topic

FETFLAG-03-2018

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.3. FET Flagships
H2020-FETFLAG-2018-2020
FETFLAG-03-2018 FET Flagship on Quantum Technologies