2D-SIPC | Two-dimensional quantum materials and devices for scalable integrated photonic circuits

Summary
The proposed project aims at developing scalable quantum networks, based on photonic chip integration of novel 2D material quantum devices, with the main goal to demonstrate all-optical on-chip quantum processing. The recent demonstration of effortless integration of 2D materials onto photonics and CMOS platforms will result in a breakthrough in the development of on-chip quantum networks. 2D-SIPC will take full advantage of the huge variety of 2D materials and heterostructures and prototype novel quantum devices with revolutionary functionalities. In particular, we will develop electrically driven and entangled single photon emitters, broadband and high temperature single photon detectors, ultra-fast waveguide integrated optical modulators and non-linear gates. To pave the way to scalable networks, 2D-SIPC will develop large scale growth techniques of the most promising 2D materials. With this unique combination of features 2D-SIPC will allow the first demonstration of on-chip optical quantum processing, a key milestone for many quantum network concepts, such as extended secure quantum communication, scaling up of quantum computers and simulators, and novel quantum sensing applications with entangled photons. In particular, as these topics cover all four Quantum Technology pillars of the Quantum Flagship, our proposal makes a strong strategic link to each one of them. Beyond the 2D-SIPC platform, each developed component will be exploited in such distant fields as biological and medical imaging, radio-astronomy and environmental monitoring. The 2D-SIPC consortium includes four academic and one industrial partner with a high degree of complementarity that are at the forefronts of their fields, including single photon detection (ICFO), theory and fabrication of 2D materials and their heterostructures (UNIMAN), single photon emission (UCAM), chip based photonic circuits (CNIT) and commercial single photon detection, single photon emission and packaging (SQ).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/820378
Start date: 01-10-2018
End date: 31-03-2022
Total budget - Public funding: 2 976 812,50 Euro - 2 976 812,00 Euro
Cordis data

Original description

The proposed project aims at developing scalable quantum networks, based on photonic chip integration of novel 2D material quantum devices, with the main goal to demonstrate all-optical on-chip quantum processing. The recent demonstration of effortless integration of 2D materials onto photonics and CMOS platforms will result in a breakthrough in the development of on-chip quantum networks. 2D-SIPC will take full advantage of the huge variety of 2D materials and heterostructures and prototype novel quantum devices with revolutionary functionalities. In particular, we will develop electrically driven and entangled single photon emitters, broadband and high temperature single photon detectors, ultra-fast waveguide integrated optical modulators and non-linear gates. To pave the way to scalable networks, 2D-SIPC will develop large scale growth techniques of the most promising 2D materials. With this unique combination of features 2D-SIPC will allow the first demonstration of on-chip optical quantum processing, a key milestone for many quantum network concepts, such as extended secure quantum communication, scaling up of quantum computers and simulators, and novel quantum sensing applications with entangled photons. In particular, as these topics cover all four Quantum Technology pillars of the Quantum Flagship, our proposal makes a strong strategic link to each one of them. Beyond the 2D-SIPC platform, each developed component will be exploited in such distant fields as biological and medical imaging, radio-astronomy and environmental monitoring. The 2D-SIPC consortium includes four academic and one industrial partner with a high degree of complementarity that are at the forefronts of their fields, including single photon detection (ICFO), theory and fabrication of 2D materials and their heterostructures (UNIMAN), single photon emission (UCAM), chip based photonic circuits (CNIT) and commercial single photon detection, single photon emission and packaging (SQ).

Status

CLOSED

Call topic

FETFLAG-03-2018

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.3. FET Flagships
H2020-FETFLAG-2018-2020
FETFLAG-03-2018 FET Flagship on Quantum Technologies