Summary
The proposed project aims at applying and exploiting a novel type of imaging technology, a large area interferometric imager (LIM), which was largely developed within the FET project Q-MIC. More specifically, we will analyse customer-relevant samples, evaluate the performance of prototypes in industrial environments and potentially adapt them to specific needs, and finally perform full market assessment and commercialization plan for the proposed technology. This in close collaboration with companies, which have already shown interest in using the technology as measurement, inspection tool or integrating it into their existing imaging systems. The LIM allows imaging of large sample areas and volumes with unprecedented sensitivities (a few atomic layers of material). Thanks to a close reference scheme, the technology is inherently very robust while also offering the possibility of compacting it in a small form factor. All these features are attractive for material analysis and in-line inspection, essential in the high-tech semiconductor, glass, photonic, and display industries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101034765 |
Start date: | 01-10-2021 |
End date: | 30-09-2022 |
Total budget - Public funding: | - 100 000,00 Euro |
Cordis data
Original description
The proposed project aims at applying and exploiting a novel type of imaging technology, a large area interferometric imager (LIM), which was largely developed within the FET project Q-MIC. More specifically, we will analyse customer-relevant samples, evaluate the performance of prototypes in industrial environments and potentially adapt them to specific needs, and finally perform full market assessment and commercialization plan for the proposed technology. This in close collaboration with companies, which have already shown interest in using the technology as measurement, inspection tool or integrating it into their existing imaging systems. The LIM allows imaging of large sample areas and volumes with unprecedented sensitivities (a few atomic layers of material). Thanks to a close reference scheme, the technology is inherently very robust while also offering the possibility of compacting it in a small form factor. All these features are attractive for material analysis and in-line inspection, essential in the high-tech semiconductor, glass, photonic, and display industries.Status
CLOSEDCall topic
FETOPEN-03-2018-2019-2020Update Date
27-04-2024
Images
No images available.
Geographical location(s)