EBEAM | Electron beams enhancing analytical microscopy

Summary
Electron microscopy (EM) is a key technology to reveal the atomic structure and chemical composition of materials with (sub-)Ångström resolution. It is an essential technique to enable the breakthroughs that are needed to solve societal challenges in renewable energy technology, life sciences, and communication and quantum technology. To realize these breakthroughs, we require EM technology with ultrafast time scale, ultrahigh energy resolution, covering low-energy spectral ranges and several other capabilities, all of which are beyond the present state of the art. The EBEAM project brings together a proven consortium of EM experts that will integrate their complementary EM science and technology into completely new EM measurement modalities, exploiting the unique interactions between free electrons and optical light fields, and thereby combining ultrahigh spectral and temporal control with sub-Ångström spatial resolution. The project’s ambition is to demonstrate
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101017720
Start date: 01-01-2021
End date: 31-03-2026
Total budget - Public funding: 5 045 530,00 Euro - 5 045 530,00 Euro
Cordis data

Original description

Electron microscopy (EM) is a key technology to reveal the atomic structure and chemical composition of materials with (sub-)Ångström resolution. It is an essential technique to enable the breakthroughs that are needed to solve societal challenges in renewable energy technology, life sciences, and communication and quantum technology. To realize these breakthroughs, we require EM technology with ultrafast time scale, ultrahigh energy resolution, covering low-energy spectral ranges and several other capabilities, all of which are beyond the present state of the art. The EBEAM project brings together a proven consortium of EM experts that will integrate their complementary EM science and technology into completely new EM measurement modalities, exploiting the unique interactions between free electrons and optical light fields, and thereby combining ultrahigh spectral and temporal control with sub-Ångström spatial resolution. The project’s ambition is to demonstrate

Status

SIGNED

Call topic

FETPROACT-EIC-07-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.2. FET Proactive
H2020-FETPROACT-2018-2020
FETPROACT-EIC-07-2020 FET Proactive: emerging paradigms and communities