Summary
15 million Europeans live on Europe’s 2,400 inhabited islands, at an average of approximately 1,500 households per island.
As recognised by the European Commission, island energy is expensive, polluting, inefficient and dependent on external
supply, with significant negative impacts on emissions, the competitiveness of businesses, and the economy. Existing
renewable alternatives are often unsuitable for these communities, such as wind and solar power, as the energy they
generate is unpredictable and intermittent, making it difficult to rely on. Tidal energy is also often unsuitable, as it requires
fast tidal flows (over 2.5m/s) which only occur in a few specific hot spots around the World.
Solution: Deep Green Island Mode
The Deep Green Island Mode (DGIM) is a stand-alone tidal and ocean current energy converter for off- grid applications.
DGIM is based on the concept of flying an underwater kite, that when steered in an 8-shaped trajectory, generates a speed
of 8-10 times the speed of the actual current.
- Generates cost effective electricity in tidal flows as low as 1.2 m/s
- Generates up to 100kW, producing an estimated 0,35 GWh/year, enough to power 100 homes
- Can be located close to the shore
- Up to 15 times lighter per kW compared to other tidal energy solutions
- Easy, low cost installation and maintenance (low CapEx and OpEx)
- Cost of energy 60% lower than diesel generators
DG Island Mode offers cheap, clean, reliable electricity generation to island communities.
Recently we have completed our phase 1 feasibility study which has quantified the significant, global market for DGIM.
The aim of the DGIM2 project is to install the first two commercially viable DGIMs in a production and customer environment
on the Faroe Islands. Successful demonstration of DGIM will act as a first step to developing commercial ties with utilities
across Europe, both for DGIM and as a catalyst for the market up take of the “utility scale” Deep Green.
As recognised by the European Commission, island energy is expensive, polluting, inefficient and dependent on external
supply, with significant negative impacts on emissions, the competitiveness of businesses, and the economy. Existing
renewable alternatives are often unsuitable for these communities, such as wind and solar power, as the energy they
generate is unpredictable and intermittent, making it difficult to rely on. Tidal energy is also often unsuitable, as it requires
fast tidal flows (over 2.5m/s) which only occur in a few specific hot spots around the World.
Solution: Deep Green Island Mode
The Deep Green Island Mode (DGIM) is a stand-alone tidal and ocean current energy converter for off- grid applications.
DGIM is based on the concept of flying an underwater kite, that when steered in an 8-shaped trajectory, generates a speed
of 8-10 times the speed of the actual current.
- Generates cost effective electricity in tidal flows as low as 1.2 m/s
- Generates up to 100kW, producing an estimated 0,35 GWh/year, enough to power 100 homes
- Can be located close to the shore
- Up to 15 times lighter per kW compared to other tidal energy solutions
- Easy, low cost installation and maintenance (low CapEx and OpEx)
- Cost of energy 60% lower than diesel generators
DG Island Mode offers cheap, clean, reliable electricity generation to island communities.
Recently we have completed our phase 1 feasibility study which has quantified the significant, global market for DGIM.
The aim of the DGIM2 project is to install the first two commercially viable DGIMs in a production and customer environment
on the Faroe Islands. Successful demonstration of DGIM will act as a first step to developing commercial ties with utilities
across Europe, both for DGIM and as a catalyst for the market up take of the “utility scale” Deep Green.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/872404 |
Start date: | 01-08-2019 |
End date: | 31-07-2021 |
Total budget - Public funding: | 6 128 625,00 Euro - 2 499 995,00 Euro |
Cordis data
Original description
15 million Europeans live on Europe’s 2,400 inhabited islands, at an average of approximately 1,500 households per island.As recognised by the European Commission, island energy is expensive, polluting, inefficient and dependent on external
supply, with significant negative impacts on emissions, the competitiveness of businesses, and the economy. Existing
renewable alternatives are often unsuitable for these communities, such as wind and solar power, as the energy they
generate is unpredictable and intermittent, making it difficult to rely on. Tidal energy is also often unsuitable, as it requires
fast tidal flows (over 2.5m/s) which only occur in a few specific hot spots around the World.
Solution: Deep Green Island Mode
The Deep Green Island Mode (DGIM) is a stand-alone tidal and ocean current energy converter for off- grid applications.
DGIM is based on the concept of flying an underwater kite, that when steered in an 8-shaped trajectory, generates a speed
of 8-10 times the speed of the actual current.
- Generates cost effective electricity in tidal flows as low as 1.2 m/s
- Generates up to 100kW, producing an estimated 0,35 GWh/year, enough to power 100 homes
- Can be located close to the shore
- Up to 15 times lighter per kW compared to other tidal energy solutions
- Easy, low cost installation and maintenance (low CapEx and OpEx)
- Cost of energy 60% lower than diesel generators
DG Island Mode offers cheap, clean, reliable electricity generation to island communities.
Recently we have completed our phase 1 feasibility study which has quantified the significant, global market for DGIM.
The aim of the DGIM2 project is to install the first two commercially viable DGIMs in a production and customer environment
on the Faroe Islands. Successful demonstration of DGIM will act as a first step to developing commercial ties with utilities
across Europe, both for DGIM and as a catalyst for the market up take of the “utility scale” Deep Green.
Status
CLOSEDCall topic
EIC-SMEInst-2018-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all