Hotspot | Understanding gene regulation in nuclear space

Summary
There is accumulating evidence for a new gene expression paradigm, in which genes and transcription factors cooperate to create specialized nuclear hotspots optimized for transcription. How hotspots form, and how they impact transcription, however, is unclear. This is mostly because mechanistic and functional approaches have been limited by the large number of hotspots per nucleus, their small size, and their transient nature. Here, wThere is accumulating evidence for a new gene expression paradigm, in which genes and transcription factors cooperate to create specialized nuclear hotspots optimized for transcription. How hotspots form, and how they impact transcription, however, is unclear. This is mostly because mechanistic and functional approaches have been limited by the large number of hotspots per nucleus, their small size, and their transient nature. Here, we will take advantage of two hotspots that precede all other transcription during zebrafish embryogenesis. The hotspots are large, isolated, and relatively long-lived, and we can interfere with their formation specifically. They therefore provide an excellent opportunity to study nuclear hotspots. The stereotyped activation of transcription during embryogenesis further provides the opportunity to determine the effect of hotspots on gene expression. In Aim 1, we will determine what triggers hotspot formation, identify the components of hotspots and the order in which they come together, and determine the enrichment of components in hotspots compared to nucleoplasm. In Aim 2, we turn our attention to the genes that come together in these hotspots. We will develop a method to visualize single copy genes live and use this to determine how genes come together in transcription hotspots to be activated. Together, the work we propose will reveal how stable gene expression programs can emerge from the self- organizing interactions between chromatin, transcription factors and emergent properties of transcribed sites.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101003023
Start date: 01-07-2021
End date: 30-06-2026
Total budget - Public funding: 1 994 500,00 Euro - 1 994 500,00 Euro
Cordis data

Original description

There is accumulating evidence for a new gene expression paradigm, in which genes and transcription factors cooperate to create specialized nuclear hotspots optimized for transcription. How hotspots form, and how they impact transcription, however, is unclear. This is mostly because mechanistic and functional approaches have been limited by the large number of hotspots per nucleus, their small size, and their transient nature. Here, wThere is accumulating evidence for a new gene expression paradigm, in which genes and transcription factors cooperate to create specialized nuclear hotspots optimized for transcription. How hotspots form, and how they impact transcription, however, is unclear. This is mostly because mechanistic and functional approaches have been limited by the large number of hotspots per nucleus, their small size, and their transient nature. Here, we will take advantage of two hotspots that precede all other transcription during zebrafish embryogenesis. The hotspots are large, isolated, and relatively long-lived, and we can interfere with their formation specifically. They therefore provide an excellent opportunity to study nuclear hotspots. The stereotyped activation of transcription during embryogenesis further provides the opportunity to determine the effect of hotspots on gene expression. In Aim 1, we will determine what triggers hotspot formation, identify the components of hotspots and the order in which they come together, and determine the enrichment of components in hotspots compared to nucleoplasm. In Aim 2, we turn our attention to the genes that come together in these hotspots. We will develop a method to visualize single copy genes live and use this to determine how genes come together in transcription hotspots to be activated. Together, the work we propose will reveal how stable gene expression programs can emerge from the self- organizing interactions between chromatin, transcription factors and emergent properties of transcribed sites.

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS