ShimBSD | Shimura varieties and the Birch--Swinnerton-Dyer conjecture

Summary
"One of the most famous open problems in mathematics is the Birch–Swinnerton-Dyer (BSD) conjecture, which predicts that the size of the set of rational points on an elliptic curve is determined by the order of vanishing at s = 1 of its Hasse–Weil L-function. Building a crucial breakthrough due to Kolyvagin in the 1990's—the discovery of the first example of an ""Euler system""—the BSD conjecture has now been proved for a wide class of elliptic curves over the rationals: those where the order of vanishing of the L-function (the ""analytic rank"") is 0 or 1, which conjecturally accounts for 100% of elliptic curves.

However, the case of elliptic curves over the rationals is only the tip of an iceberg. Versions of the BSD conjecture are also expected to hold for elliptic curves over number fields, and more generally for abelian varieties of any dimension (with elliptic curves being the case of dimension 1). Even more generally, the Bloch–Kato conjecture predicts that for any L-function arising from geometry, its order of vanishing at any integer point encodes geometric information. However, these conjectures are far beyond the reach of Kolyvagin's Euler system.

The aim of my proposal is to prove new cases of the BSD conjecture and the Bloch–Kato conjecture, using new Euler systems arising from the geometry of unitary and symplectic Shimura varieties. In particular, I will prove the rank 0 case of the BSD conjecture for abelian surfaces over the rationals, elliptic curves over imaginary quadratic fields, and abelian three-folds with complex multiplication, assuming appropriate modularity results hold for these objects (which are known in many cases)."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101001051
Start date: 01-05-2021
End date: 30-04-2026
Total budget - Public funding: 1 739 143,00 Euro - 1 739 143,00 Euro
Cordis data

Original description

"One of the most famous open problems in mathematics is the Birch–Swinnerton-Dyer (BSD) conjecture, which predicts that the size of the set of rational points on an elliptic curve is determined by the order of vanishing at s = 1 of its Hasse–Weil L-function. Building a crucial breakthrough due to Kolyvagin in the 1990's—the discovery of the first example of an ""Euler system""—the BSD conjecture has now been proved for a wide class of elliptic curves over the rationals: those where the order of vanishing of the L-function (the ""analytic rank"") is 0 or 1, which conjecturally accounts for 100% of elliptic curves.

However, the case of elliptic curves over the rationals is only the tip of an iceberg. Versions of the BSD conjecture are also expected to hold for elliptic curves over number fields, and more generally for abelian varieties of any dimension (with elliptic curves being the case of dimension 1). Even more generally, the Bloch–Kato conjecture predicts that for any L-function arising from geometry, its order of vanishing at any integer point encodes geometric information. However, these conjectures are far beyond the reach of Kolyvagin's Euler system.

The aim of my proposal is to prove new cases of the BSD conjecture and the Bloch–Kato conjecture, using new Euler systems arising from the geometry of unitary and symplectic Shimura varieties. In particular, I will prove the rank 0 case of the BSD conjecture for abelian surfaces over the rationals, elliptic curves over imaginary quadratic fields, and abelian three-folds with complex multiplication, assuming appropriate modularity results hold for these objects (which are known in many cases)."

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS