IFM Micro Thruster | The unique modular propulsion system suitable for all small satellites from 1 to 500 kg

Summary
Several players are investing in Constellations of Satellites to provide customers services as global imaging in near real time, telephone & internet coverage, monitoring of ships, airplanes, fires etc. The global market of this new space race, worth 2.2 B$ in 2016, is expected to increase to 5.3 B$ in 2021. Many manufacturers are trying to disrupt market by lowering manufacturing costs, but the most difficult component to acquire remains the propulsion system: these satellites, in fact, work without a propulsion system, resulting in high replacement rates (once per year), limited orbit manoeuvres, difficulties in flight formation, passive deorbiting not sufficient to put satellites into graveyard orbits at their end of life.
AMR propulsion aims to solve these problem with a unique, modular product: the IFM Micro Thruster, a compact, modular propulsion system suitable for all small satellites ranging 1-500 kg, with the highest propellant efficiency, capable of controlling satellites’ position with an unprecedented accuracy, perfectly suitable for single CubeSats as well as for big constellations of satellites (>100). The core, proprietary technology is based on a widely tested (13,000+ h) thruster developed for large satellite control in future ESA missions, specifically re-engineered to fit the space and mass constraints of small satellites. The thruster is based on a 2D array of porous tungsten needle-shaped emitters, capable of giving high stability and high reliability to the plasma thrust.
During Phase 2 project, AMR will design and engineer the qualified model (i.e. the commercial version) of the IFM Micro Thruster; design and install an ISO-9001 certified production line, and will demonstrate and validate the technology with relevant customers. The overall goal is to reach full commercialization of IFM Micro Thruster at the end of Phase 2.
Results, demos, etc. Show all and search (13)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/779196
Start date: 01-07-2017
End date: 31-12-2019
Total budget - Public funding: 1 671 825,00 Euro - 1 170 277,00 Euro
Cordis data

Original description

Several players are investing in Constellations of Satellites to provide customers services as global imaging in near real time, telephone & internet coverage, monitoring of ships, airplanes, fires etc. The global market of this new space race, worth 2.2 B$ in 2016, is expected to increase to 5.3 B$ in 2021. Many manufacturers are trying to disrupt market by lowering manufacturing costs, but the most difficult component to acquire remains the propulsion system: these satellites, in fact, work without a propulsion system, resulting in high replacement rates (once per year), limited orbit manoeuvres, difficulties in flight formation, passive deorbiting not sufficient to put satellites into graveyard orbits at their end of life.
AMR propulsion aims to solve these problem with a unique, modular product: the IFM Micro Thruster, a compact, modular propulsion system suitable for all small satellites ranging 1-500 kg, with the highest propellant efficiency, capable of controlling satellites’ position with an unprecedented accuracy, perfectly suitable for single CubeSats as well as for big constellations of satellites (>100). The core, proprietary technology is based on a widely tested (13,000+ h) thruster developed for large satellite control in future ESA missions, specifically re-engineered to fit the space and mass constraints of small satellites. The thruster is based on a 2D array of porous tungsten needle-shaped emitters, capable of giving high stability and high reliability to the plasma thrust.
During Phase 2 project, AMR will design and engineer the qualified model (i.e. the commercial version) of the IFM Micro Thruster; design and install an ISO-9001 certified production line, and will demonstrate and validate the technology with relevant customers. The overall goal is to reach full commercialization of IFM Micro Thruster at the end of Phase 2.

Status

CLOSED

Call topic

SMEInst-04-2016-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)