MolDAM | Single Molecular Devices by Atomic Manipulation

Summary
Breakthroughs in on-surface chemistry and characterization techniques have recently enabled the creation of novel molecules and the direct imaging of reaction intermediates at the single molecule level. Here, by employing the novel concepts of charge manipulation within molecules and coherent control of reactions by lightwave scanning tunnelling microscopy, we will bring the control and resolution of chemical reactions to an unparalleled level. We will combine our expertise in solution synthesis of dedicated organic molecules, on-surface chemistry, atomic manipulation and single-molecule characterization with ultimate resolution in space and time. The combination of on-surface chemistry with charge-state control, possible by working on insulating supports, will unlock a plethora of novel charge-driven reaction pathways far from equilibrium. Employing ultrafast pulses, we will resolve chemical reactions with unprecedented resolution in the space and time domain step-by step unravelling the mechanisms of relevant molecular transformations. We will discover and characterize novel on-surface reactions, elusive molecules, intermediates and transition states and fabricate molecular machines and complex molecular networks with engineered topologically protected band structures.
Charge control within molecular devices on insulating supports will allow us to study electron transfer, carrier generation and recombination, redox-reactions and electroluminescence at the molecular level. Novel molecular machines will be directed by controlling single-electron charges within the device. Logic functions based on single-electron transfer will be implemented in molecular networks. Controlling and investigating these atomically defined devices on their intrinsic length and time scales will revolutionize our fundamental understanding of the molecular world with impact on fields as diverse as chemical synthesis, light harvesting, molecular machinery and computing.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/951519
Start date: 01-10-2021
End date: 30-09-2027
Total budget - Public funding: 9 068 885,00 Euro - 9 068 885,00 Euro
Cordis data

Original description

Breakthroughs in on-surface chemistry and characterization techniques have recently enabled the creation of novel molecules and the direct imaging of reaction intermediates at the single molecule level. Here, by employing the novel concepts of charge manipulation within molecules and coherent control of reactions by lightwave scanning tunnelling microscopy, we will bring the control and resolution of chemical reactions to an unparalleled level. We will combine our expertise in solution synthesis of dedicated organic molecules, on-surface chemistry, atomic manipulation and single-molecule characterization with ultimate resolution in space and time. The combination of on-surface chemistry with charge-state control, possible by working on insulating supports, will unlock a plethora of novel charge-driven reaction pathways far from equilibrium. Employing ultrafast pulses, we will resolve chemical reactions with unprecedented resolution in the space and time domain step-by step unravelling the mechanisms of relevant molecular transformations. We will discover and characterize novel on-surface reactions, elusive molecules, intermediates and transition states and fabricate molecular machines and complex molecular networks with engineered topologically protected band structures.
Charge control within molecular devices on insulating supports will allow us to study electron transfer, carrier generation and recombination, redox-reactions and electroluminescence at the molecular level. Novel molecular machines will be directed by controlling single-electron charges within the device. Logic functions based on single-electron transfer will be implemented in molecular networks. Controlling and investigating these atomically defined devices on their intrinsic length and time scales will revolutionize our fundamental understanding of the molecular world with impact on fields as diverse as chemical synthesis, light harvesting, molecular machinery and computing.

Status

SIGNED

Call topic

ERC-2020-SyG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-SyG ERC Synergy Grant