SynLink | Revealing the Synapse Architecture and Plasticity by Structural Interactomics

Summary
Brain function crucially depends on chemical neurotransmission at synapses, while, conversely, synaptic dysfunction underlies neurological and psychiatric disorders. Synapses are composed of more than 2,000 distinct proteins, spatially organized into specialized molecular machineries. During decades of efforts, researchers have acquired a wealth of knowledge on individual key components of the synapse. However, the overall picture of the spatial arrangement, molecular architecture and interaction network of the synaptic proteome remains largely uncharted. Furthermore, innovative methods that allow system-wide profiling of these organizational aspects of synaptic proteins are in great demand.
I propose to develop a highly sensitive cross-linking mass spectrometry (XL-MS) pipeline to analyze structural and organizational features of the synaptic proteome at an unprecedented depth and comprehensiveness. In parallel, I also plan to establish quantitative XL-MS strategies to reveal global network rearrangements and complex-specific alterations during long-term potentiation, which arguably is the most attractive cellular model for learning and memory. Importantly, it is foreseeable that numerous novel insights can be discovered, for which I will use complementary approaches and tools, such as biochemistry, super-resolution imaging, structural modelling and network analysis to validate and interrogate their molecular details and network principles. These studies will yield groundbreaking insights into the molecular architecture of the synapse and thereby fill a crucial knowledge gap in neuroscience. Furthermore, they will provide a framework to gain a deeper understanding of the dynamic regulation in synaptic plasticity and synaptic dysfunction in neurological disorders.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/949184
Start date: 01-01-2021
End date: 31-12-2025
Total budget - Public funding: 1 499 243,00 Euro - 1 499 243,00 Euro
Cordis data

Original description

Brain function crucially depends on chemical neurotransmission at synapses, while, conversely, synaptic dysfunction underlies neurological and psychiatric disorders. Synapses are composed of more than 2,000 distinct proteins, spatially organized into specialized molecular machineries. During decades of efforts, researchers have acquired a wealth of knowledge on individual key components of the synapse. However, the overall picture of the spatial arrangement, molecular architecture and interaction network of the synaptic proteome remains largely uncharted. Furthermore, innovative methods that allow system-wide profiling of these organizational aspects of synaptic proteins are in great demand.
I propose to develop a highly sensitive cross-linking mass spectrometry (XL-MS) pipeline to analyze structural and organizational features of the synaptic proteome at an unprecedented depth and comprehensiveness. In parallel, I also plan to establish quantitative XL-MS strategies to reveal global network rearrangements and complex-specific alterations during long-term potentiation, which arguably is the most attractive cellular model for learning and memory. Importantly, it is foreseeable that numerous novel insights can be discovered, for which I will use complementary approaches and tools, such as biochemistry, super-resolution imaging, structural modelling and network analysis to validate and interrogate their molecular details and network principles. These studies will yield groundbreaking insights into the molecular architecture of the synapse and thereby fill a crucial knowledge gap in neuroscience. Furthermore, they will provide a framework to gain a deeper understanding of the dynamic regulation in synaptic plasticity and synaptic dysfunction in neurological disorders.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG