NANOMXM | Nanoscale Chemical Imaging of MXene Electrochemical Storage by Operando Scanning X-ray Microscopy

Summary
Finding efficient ways to store and deliver electrical energy is urgently needed for the large-scale development of renewable energy sources. The use of pseudocapacitive materials, such as 2D transition metal carbides and nitrides, so-called MXenes, is an extremely promising solution to achieve electrochemical energy storage with high power and energy densities, benefiting from fast redox reactions on transition metal oxides. Nevertheless, local electrochemical processes occurring at the solid-liquid interface of pseudocapacitors are currently largely unexplored. The goal of this project is to image for the first time electrochemical processes occurring during pseudocapacitive electrochemical storage on MXenes at the nanoscale with operando Scanning Transmission X-ray microscopy (STXM). Using synchrotron X-ray light, STXM will allow element-selective chemical mapping with 30 kHz). Redox and intercalation pseudocapacitive charging processes will be investigated directly in acidic or alkali cations-containing electrolytes, respectively. By offering unprecedented chemical sensitivity, spatial and temporal resolutions in liquid simultaneously, NANOMXM will provide a radically new method to probe pseudocapacitive electrochemical storage in MXene. Achieving operando imaging of fast electrochemical reactions at the nanoscale would be a major breakthrough that could open new perspectives to investigate further electrochemical processes on metal oxide-based materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/947852
Start date: 01-02-2021
End date: 30-11-2026
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Finding efficient ways to store and deliver electrical energy is urgently needed for the large-scale development of renewable energy sources. The use of pseudocapacitive materials, such as 2D transition metal carbides and nitrides, so-called MXenes, is an extremely promising solution to achieve electrochemical energy storage with high power and energy densities, benefiting from fast redox reactions on transition metal oxides. Nevertheless, local electrochemical processes occurring at the solid-liquid interface of pseudocapacitors are currently largely unexplored. The goal of this project is to image for the first time electrochemical processes occurring during pseudocapacitive electrochemical storage on MXenes at the nanoscale with operando Scanning Transmission X-ray microscopy (STXM). Using synchrotron X-ray light, STXM will allow element-selective chemical mapping with 30 kHz). Redox and intercalation pseudocapacitive charging processes will be investigated directly in acidic or alkali cations-containing electrolytes, respectively. By offering unprecedented chemical sensitivity, spatial and temporal resolutions in liquid simultaneously, NANOMXM will provide a radically new method to probe pseudocapacitive electrochemical storage in MXene. Achieving operando imaging of fast electrochemical reactions at the nanoscale would be a major breakthrough that could open new perspectives to investigate further electrochemical processes on metal oxide-based materials.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG