DEPO | Reversing Controlled Radical Polymerisation: Towards Complete Depolymerisation

Summary
Controlled radical polymerisation has revolutionised the field of polymer chemistry by allowing access to the synthesis of a wide range of materials with controlled molecular weight, dispersity, architecture and end-group fidelity. Although thousands of papers have reported on optimising the polymerisation parameters, very few reports have focused on reversing controlled radical polymerisation. This is a significant oversight, as controlled depolymerisation has the potential not only to reveal intriguing avenues of research, but also to pave the way for promising applications including innovative polymer characterisation methodologies. The overall vision of DEPO is to develop a universal, quantitative and controlled depolymerisation of polymers (i.e. converting polymers back to the corresponding monomers) synthesised mainly by controlled radical polymerisation. Although this strategy will initially be developed for atom transfer radical polymerisation (ATRP) systems, it will be expanded to include reversible addition-fragmentation chain-transfer (RAFT) and nitroxide-mediated polymerisation (NMP) protocols. Widely-used polymers synthesised by other methods such as polystyrene will also be modified to permit for depolymerisation. Importantly, this approach will operate at room temperature and will be applicable to a range of polymer classes and architectures (block copolymers, stars, etc.). The fundamental outcomes of this research will inform depolymerisation design strategies and will pave the way for additional opportunities such as advanced polymer characterisation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/949219
Start date: 01-09-2020
End date: 31-08-2025
Total budget - Public funding: 1 491 260,00 Euro - 1 491 260,00 Euro
Cordis data

Original description

Controlled radical polymerisation has revolutionised the field of polymer chemistry by allowing access to the synthesis of a wide range of materials with controlled molecular weight, dispersity, architecture and end-group fidelity. Although thousands of papers have reported on optimising the polymerisation parameters, very few reports have focused on reversing controlled radical polymerisation. This is a significant oversight, as controlled depolymerisation has the potential not only to reveal intriguing avenues of research, but also to pave the way for promising applications including innovative polymer characterisation methodologies. The overall vision of DEPO is to develop a universal, quantitative and controlled depolymerisation of polymers (i.e. converting polymers back to the corresponding monomers) synthesised mainly by controlled radical polymerisation. Although this strategy will initially be developed for atom transfer radical polymerisation (ATRP) systems, it will be expanded to include reversible addition-fragmentation chain-transfer (RAFT) and nitroxide-mediated polymerisation (NMP) protocols. Widely-used polymers synthesised by other methods such as polystyrene will also be modified to permit for depolymerisation. Importantly, this approach will operate at room temperature and will be applicable to a range of polymer classes and architectures (block copolymers, stars, etc.). The fundamental outcomes of this research will inform depolymerisation design strategies and will pave the way for additional opportunities such as advanced polymer characterisation.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG