CARPE | Combinatorial Applications of Random Processes and Expansion

Summary
The concepts of Randomness and Expansion are pervasive throughout Mathematics and its applications to many areas of Science and Engineering. The mathematical study of Expansion can be traced back to the ancient Greeks and of Probability to the analysis (e.g. by Fermat and Pascal) of games of chance. In the modern era, both concepts are influential in many areas of Mathematics (this proposal will emphasise Combinatorics and Probability, and also touch on Analysis, Geometry, Topology, Number Theory and Theoretical Computer Science). Within Science and Engineering, topics related to the mathematical problems covered in this proposal include Approximation Algorithms (Counting and Sampling), Statistical Physics (Magnetism, Lattice Gases, Polymer Models), Mathematical Biology (Epidemiology), Control Theory and Fluid Flow.

My recent and ongoing research has generated several exciting new ideas and methods. The most recent of these, the Cluster Expansion Method (work with Matthew Jenssen), is a far-reaching program to apply a classical tool from Statistical Physics to developing methods for describing the typical structure of models such as random homomorphisms from a discrete torus. Another exciting recent technique, Global Hypercontractivity (work with Noam Lifshitz, Eoin Long and Dor Minzer), is a structural refinement of the classical hypercontractivity theorem; we will generalise many of its applications to Mathematics and Computer Science and give several new applications, e.g. in Extremal Combinatorics (via the Junta Method). I will also develop new Absorption techniques to answer constructive mathematical questions that seem beyond the reach of Randomised Algebraic Construction (a method I developed to solve Steiner's 1852 question on the Existence of Designs).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/883810
Start date: 01-07-2021
End date: 30-06-2026
Total budget - Public funding: 2 499 010,00 Euro - 2 499 010,00 Euro
Cordis data

Original description

The concepts of Randomness and Expansion are pervasive throughout Mathematics and its applications to many areas of Science and Engineering. The mathematical study of Expansion can be traced back to the ancient Greeks and of Probability to the analysis (e.g. by Fermat and Pascal) of games of chance. In the modern era, both concepts are influential in many areas of Mathematics (this proposal will emphasise Combinatorics and Probability, and also touch on Analysis, Geometry, Topology, Number Theory and Theoretical Computer Science). Within Science and Engineering, topics related to the mathematical problems covered in this proposal include Approximation Algorithms (Counting and Sampling), Statistical Physics (Magnetism, Lattice Gases, Polymer Models), Mathematical Biology (Epidemiology), Control Theory and Fluid Flow.

My recent and ongoing research has generated several exciting new ideas and methods. The most recent of these, the Cluster Expansion Method (work with Matthew Jenssen), is a far-reaching program to apply a classical tool from Statistical Physics to developing methods for describing the typical structure of models such as random homomorphisms from a discrete torus. Another exciting recent technique, Global Hypercontractivity (work with Noam Lifshitz, Eoin Long and Dor Minzer), is a structural refinement of the classical hypercontractivity theorem; we will generalise many of its applications to Mathematics and Computer Science and give several new applications, e.g. in Extremal Combinatorics (via the Junta Method). I will also develop new Absorption techniques to answer constructive mathematical questions that seem beyond the reach of Randomised Algebraic Construction (a method I developed to solve Steiner's 1852 question on the Existence of Designs).

Status

SIGNED

Call topic

ERC-2019-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2019-ADG