UNITY | A Single-Photon Source Featuring Unity Efficiency And Unity Indistinguishability For Scalable Optical Quantum Information Processing

Summary
Within optical quantum information processing, the quantum bits are encoded on single photons and their quantum mechanical properties are exploited to build new functionality. A prime example is the quantum computer, which can be built simply from single-photon sources and detectors, and simple optical components. However for scalable optical quantum computing involving hundreds of photons, the performance requirements for the single-photon source are daunting: the source must feature near-unity efficiency and near-unity indistinguishability simultaneously! Today, all known source designs suffer from inherent trade-offs between efficiency and indistinguishability and their performance is insufficient for scalable quantum computing.
The project objective is to realize a source of single indistinguishable photons with performance of ground-breaking nature. The break-through lies in the simultaneous realization of near-unity efficiency and indistinguishability, a combination which overcomes the limitations of present state-of-the-art and ventures far into the regime of scalable quantum computing.
As an expert in single-photon source engineering I find myself in a unique position to address this challenge. Since it is unknown how to design such a source, I will first establish a new understanding of the physics of the near-unity regime, where phonon-induced decoherence represents a main limitation for the indistinguishability. I will then advance state-of-the-art in optical engineering by proposing a novel design, where all physical parameters can be controlled independently. The modelling of the near-unity performance source is extremely demanding, and the analysis requires additional advances within optical simulations and open quantum systems theory. Once this is achieved, I will fabricate a prototype and test it in a multi-photon interference boson sampling experiment to unambiguously prove that scalable optical quantum information processing is indeed within reach.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/865230
Start date: 01-09-2020
End date: 31-08-2025
Total budget - Public funding: 2 119 637,00 Euro - 2 119 637,00 Euro
Cordis data

Original description

Within optical quantum information processing, the quantum bits are encoded on single photons and their quantum mechanical properties are exploited to build new functionality. A prime example is the quantum computer, which can be built simply from single-photon sources and detectors, and simple optical components. However for scalable optical quantum computing involving hundreds of photons, the performance requirements for the single-photon source are daunting: the source must feature near-unity efficiency and near-unity indistinguishability simultaneously! Today, all known source designs suffer from inherent trade-offs between efficiency and indistinguishability and their performance is insufficient for scalable quantum computing.
The project objective is to realize a source of single indistinguishable photons with performance of ground-breaking nature. The break-through lies in the simultaneous realization of near-unity efficiency and indistinguishability, a combination which overcomes the limitations of present state-of-the-art and ventures far into the regime of scalable quantum computing.
As an expert in single-photon source engineering I find myself in a unique position to address this challenge. Since it is unknown how to design such a source, I will first establish a new understanding of the physics of the near-unity regime, where phonon-induced decoherence represents a main limitation for the indistinguishability. I will then advance state-of-the-art in optical engineering by proposing a novel design, where all physical parameters can be controlled independently. The modelling of the near-unity performance source is extremely demanding, and the analysis requires additional advances within optical simulations and open quantum systems theory. Once this is achieved, I will fabricate a prototype and test it in a multi-photon interference boson sampling experiment to unambiguously prove that scalable optical quantum information processing is indeed within reach.

Status

SIGNED

Call topic

ERC-2019-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-COG