ARGPHENO | Using hidden genealogical structure to study the architecture of human disease

Summary
Large-scale genome-wide association studies (GWAS) have yielded thousands of genetic as-sociations to heritable traits, but for most common diseases, these signals collectively explain only a small fraction of phenotypic variation. The phenotypic impact of recent, rare genetic variants, in particular, is poorly understood, but currently available data sets and analytical tools cannot be used to effectively study this class of variation. To address this problem, we propose to develop new computational methodology that will enable studying the phenotypic role of recent, rare genetic variation. This will improve our understanding of the architecture of heritable complex traits, inform the design of future studies, and increase our ability to detect novel associations.

This project will address three specific aims. The first aim is to devise new methods to accurately reconstruct the complex network of genealogical relationships of individuals using high/low-coverage sequencing or microarray data. The second is to leverage these genealogical structures to infer the presence of unobserved genetic variation, with the goal of analyzing variance components of narrow sense heritability attributable to rare variants and studying the evolutionary history of heritable traits. Finally, in the third aim, we will develop new approaches to detect association to both rare and common variants, increasing the statistical power of GWAS methodology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/850869
Start date: 01-01-2020
End date: 31-12-2025
Total budget - Public funding: 1 499 665,00 Euro - 1 499 665,00 Euro
Cordis data

Original description

Large-scale genome-wide association studies (GWAS) have yielded thousands of genetic as-sociations to heritable traits, but for most common diseases, these signals collectively explain only a small fraction of phenotypic variation. The phenotypic impact of recent, rare genetic variants, in particular, is poorly understood, but currently available data sets and analytical tools cannot be used to effectively study this class of variation. To address this problem, we propose to develop new computational methodology that will enable studying the phenotypic role of recent, rare genetic variation. This will improve our understanding of the architecture of heritable complex traits, inform the design of future studies, and increase our ability to detect novel associations.

This project will address three specific aims. The first aim is to devise new methods to accurately reconstruct the complex network of genealogical relationships of individuals using high/low-coverage sequencing or microarray data. The second is to leverage these genealogical structures to infer the presence of unobserved genetic variation, with the goal of analyzing variance components of narrow sense heritability attributable to rare variants and studying the evolutionary history of heritable traits. Finally, in the third aim, we will develop new approaches to detect association to both rare and common variants, increasing the statistical power of GWAS methodology.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG