SYNTISU | Remotely-controlled functional synthetic tissues

Summary
We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/833792
Start date: 01-08-2019
End date: 31-07-2025
Total budget - Public funding: 2 428 065,00 Euro - 2 428 065,00 Euro
Cordis data

Original description

We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.

Status

SIGNED

Call topic

ERC-2018-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-ADG