COMPLEXORDER | The Complexity Revolution: Exploiting Unconventional Order in Next-Generation Materials Design

Summary
The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/788144
Start date: 01-10-2018
End date: 30-09-2024
Total budget - Public funding: 3 362 635,00 Euro - 3 362 635,00 Euro
Cordis data

Original description

The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.

Status

SIGNED

Call topic

ERC-2017-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-ADG