DLT | Deep Learning Theory: Geometric Analysis of Capacity, Optimization, and Generalization for Improving Learning in Deep Neural Networks

Summary
Deep Learning is one of the most vibrant areas of contemporary machine learning and one of the most promising approaches to Artificial Intelligence. Deep Learning drives the latest systems for image, text, and audio processing, as well as an increasing number of new technologies. The goal of this project is to advance on key open problems in Deep Learning, specifically regarding the capacity, optimization, and regularization of these algorithms. The idea is to consolidate a theoretical basis that allows us to pin down the inner workings of the present success of Deep Learning and make it more widely applicable, in particular in situations with limited data and challenging problems in reinforcement learning. The approach is based on the geometry of neural networks and exploits innovative mathematics, drawing on information geometry and algebraic statistics. This is a quite timely and unique proposal which holds promise to vastly streamline the progress of Deep Learning into new frontiers.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/757983
Start date: 01-07-2018
End date: 31-12-2023
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Deep Learning is one of the most vibrant areas of contemporary machine learning and one of the most promising approaches to Artificial Intelligence. Deep Learning drives the latest systems for image, text, and audio processing, as well as an increasing number of new technologies. The goal of this project is to advance on key open problems in Deep Learning, specifically regarding the capacity, optimization, and regularization of these algorithms. The idea is to consolidate a theoretical basis that allows us to pin down the inner workings of the present success of Deep Learning and make it more widely applicable, in particular in situations with limited data and challenging problems in reinforcement learning. The approach is based on the geometry of neural networks and exploits innovative mathematics, drawing on information geometry and algebraic statistics. This is a quite timely and unique proposal which holds promise to vastly streamline the progress of Deep Learning into new frontiers.

Status

CLOSED

Call topic

ERC-2017-STG

Update Date

27-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-STG