Summary
Bacterial infections are now a global threat demanding novel treatments due to the appearance of resistances against antibiotics at a high pace. The ESKAPE pathogens are those with highest importance in the EU and chronic infections due to biofilm formation are a particular task. Noninvasive pathogen-specific imaging of the infected tissue is not clinically available. Its successful implementation will enable the choice of appropriate therapy and boost efficacy. Furthermore,
Gram-negative bacteria have a highly protective cellular envelope as an important resistance mechanism for drugs acting intracellularly, resulting in an alarmingly empty drug-pipeline.
To overcome this gap, I will establish Lectin-directed Theranostics targeting pathogens via their extracellular carbohydrate-binding proteins at the site of infection for specific imaging and treatment. This will be implemented for the highly resistant ESKAPE pathogen Pseudomonas aeruginosa through 3 different work packages.
WP1 Sweet Imaging: Design & conjugation of lectin-directed ligands to imaging probes, Optimization of ligand/linker, in vivo proof-of-concept imaging study.
WP2 Sweet Targeting: Delivery of antibiotics to the infection through covalent linking of lectindirecting groups. Employing different antibiotics, assessment of bactericidal potency and targeting efficiency. Manufacturing of nano-carriers with surface exposed lectin-directed ligands, noncovalent charging with antibiotics. In vitro and in vivo targeting.
WP3 Sweet SMART Targeting: Conjugates as SMART drugs: specific release of anti-biofilm lectin inhibitor and drug cargo upon contact with pathogen, development of linkers cleavable by pathogenic enzymes.
SWEETBULLETS will establish fundamentally novel lectin-directed theranostics to fight these deleterious infections and provide relief to nosocomially infected and cystic fibrosis patients. It is rapidly extendable towards other ESKAPE pathogens, e.g. Klebsiella spp..
Gram-negative bacteria have a highly protective cellular envelope as an important resistance mechanism for drugs acting intracellularly, resulting in an alarmingly empty drug-pipeline.
To overcome this gap, I will establish Lectin-directed Theranostics targeting pathogens via their extracellular carbohydrate-binding proteins at the site of infection for specific imaging and treatment. This will be implemented for the highly resistant ESKAPE pathogen Pseudomonas aeruginosa through 3 different work packages.
WP1 Sweet Imaging: Design & conjugation of lectin-directed ligands to imaging probes, Optimization of ligand/linker, in vivo proof-of-concept imaging study.
WP2 Sweet Targeting: Delivery of antibiotics to the infection through covalent linking of lectindirecting groups. Employing different antibiotics, assessment of bactericidal potency and targeting efficiency. Manufacturing of nano-carriers with surface exposed lectin-directed ligands, noncovalent charging with antibiotics. In vitro and in vivo targeting.
WP3 Sweet SMART Targeting: Conjugates as SMART drugs: specific release of anti-biofilm lectin inhibitor and drug cargo upon contact with pathogen, development of linkers cleavable by pathogenic enzymes.
SWEETBULLETS will establish fundamentally novel lectin-directed theranostics to fight these deleterious infections and provide relief to nosocomially infected and cystic fibrosis patients. It is rapidly extendable towards other ESKAPE pathogens, e.g. Klebsiella spp..
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/716311 |
Start date: | 01-02-2017 |
End date: | 30-09-2022 |
Total budget - Public funding: | 1 499 551,00 Euro - 1 499 551,00 Euro |
Cordis data
Original description
Bacterial infections are now a global threat demanding novel treatments due to the appearance of resistances against antibiotics at a high pace. The ESKAPE pathogens are those with highest importance in the EU and chronic infections due to biofilm formation are a particular task. Noninvasive pathogen-specific imaging of the infected tissue is not clinically available. Its successful implementation will enable the choice of appropriate therapy and boost efficacy. Furthermore,Gram-negative bacteria have a highly protective cellular envelope as an important resistance mechanism for drugs acting intracellularly, resulting in an alarmingly empty drug-pipeline.
To overcome this gap, I will establish Lectin-directed Theranostics targeting pathogens via their extracellular carbohydrate-binding proteins at the site of infection for specific imaging and treatment. This will be implemented for the highly resistant ESKAPE pathogen Pseudomonas aeruginosa through 3 different work packages.
WP1 Sweet Imaging: Design & conjugation of lectin-directed ligands to imaging probes, Optimization of ligand/linker, in vivo proof-of-concept imaging study.
WP2 Sweet Targeting: Delivery of antibiotics to the infection through covalent linking of lectindirecting groups. Employing different antibiotics, assessment of bactericidal potency and targeting efficiency. Manufacturing of nano-carriers with surface exposed lectin-directed ligands, noncovalent charging with antibiotics. In vitro and in vivo targeting.
WP3 Sweet SMART Targeting: Conjugates as SMART drugs: specific release of anti-biofilm lectin inhibitor and drug cargo upon contact with pathogen, development of linkers cleavable by pathogenic enzymes.
SWEETBULLETS will establish fundamentally novel lectin-directed theranostics to fight these deleterious infections and provide relief to nosocomially infected and cystic fibrosis patients. It is rapidly extendable towards other ESKAPE pathogens, e.g. Klebsiella spp..
Status
CLOSEDCall topic
ERC-2016-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)