EmbodiedTech | Can humans embody augmentative robotics technology?

Summary
Wearable technology is redefining the boundaries of our own body. Wearable robotic (WR) fingers and arms are robots, designed to free up or complement our hand actions, to enhance humans’ abilities. While tremendous resources are being dedicated to the development of this groundbreaking technology, little notice is given to how the human brain might support it. The intuitive, though unfounded, view is that technology will fuse with our bodies, allowing our brains to seamlessly control it (i.e. embodied technology). This implies that our brain will share resources, originally devoted to controlling our body, to operate WRs. Here I will elucidate the conditions necessary for technological embodiment, using prosthetic limbs as a model. I will build upon knowledge gained from rehabilitation, experimental psychology and neuroscience to characterise and extend the boundaries of body representation towards successful adoption of WRs. I will combine behavioural, physiological and neuroimaging tools to address five key questions that are currently obscuring the vision of embodied technology: What conditions are necessary for a person to experience an artificial limb as part of their body? Would the resources recruited to control an artificial limb be shared, or rather conflict, with human body representation? Will the successful incorporation of WRs disorganise representations of the human limbs? Can new sensory experiences (touch) be intuitively inferred from WRs? Can the adult brain support the increased motor and cognitive demands associated with successful WRs usage? I will first focus on populations with congenital and acquired hand loss, who differ in brain resources due to plasticity, but experience similar daily-life challenges. I will then test body representation in able-bodied people while learning to use WR fingers and arm. Together, my research will provide the first foundation for guiding how to successfully incorporate technology into our body representation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/715022
Start date: 01-02-2017
End date: 31-01-2023
Total budget - Public funding: 1 499 405,99 Euro - 1 499 405,00 Euro
Cordis data

Original description

Wearable technology is redefining the boundaries of our own body. Wearable robotic (WR) fingers and arms are robots, designed to free up or complement our hand actions, to enhance humans’ abilities. While tremendous resources are being dedicated to the development of this groundbreaking technology, little notice is given to how the human brain might support it. The intuitive, though unfounded, view is that technology will fuse with our bodies, allowing our brains to seamlessly control it (i.e. embodied technology). This implies that our brain will share resources, originally devoted to controlling our body, to operate WRs. Here I will elucidate the conditions necessary for technological embodiment, using prosthetic limbs as a model. I will build upon knowledge gained from rehabilitation, experimental psychology and neuroscience to characterise and extend the boundaries of body representation towards successful adoption of WRs. I will combine behavioural, physiological and neuroimaging tools to address five key questions that are currently obscuring the vision of embodied technology: What conditions are necessary for a person to experience an artificial limb as part of their body? Would the resources recruited to control an artificial limb be shared, or rather conflict, with human body representation? Will the successful incorporation of WRs disorganise representations of the human limbs? Can new sensory experiences (touch) be intuitively inferred from WRs? Can the adult brain support the increased motor and cognitive demands associated with successful WRs usage? I will first focus on populations with congenital and acquired hand loss, who differ in brain resources due to plasticity, but experience similar daily-life challenges. I will then test body representation in able-bodied people while learning to use WR fingers and arm. Together, my research will provide the first foundation for guiding how to successfully incorporate technology into our body representation.

Status

SIGNED

Call topic

ERC-2016-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-STG