SOLED | Chiral based spin organic light emitting diodes

Summary
Organic Light-Emitting Diode (OLED) is an attractive solution for displays and lighting due to its low cost of production. The adoption of OLED technology in televisions, smartphones, and increasing number of applications in wearables, transportation and lighting are contributing to the growth of this market. OLED technology offers sharper images, better contrast and crisp colours than any existing display technology.
In lighting applications the efficiency of serial production OLEDs cannot currently reach the efficiency of fluorescent lamps and Light-Emitting Diodes (LED). Also, OLEDs are only marginally more energy efficient than the best LCD displays.
In the spin-LED/OLED concept, the electrons injected into and from the light-emitting species have their spin predetermined; therefore, the formation of “dark”, non-emitting triplet states is avoided. Based on our research on the chiral induced spin selectivity (CISS) effect, we propose to develop chiral organic semiconductor structures that provide a universal means to control the spin state of injected electrons and holes in OLEDs. This effect can increase the energy efficiency of the devices by a factor of four.
In this proof-of-concept project we will develop, manufacture and test state-of-the-art chiral molecules based spin-LED/OLED structures, which are expected to improve the energy efficiency of LEDs and OLEDs, a critical issue in view of the desire to reduce the energy consumption of electronic devices. The efficiency is expected to improve by a factor of four. The project also takes pre-commercialisation measures and carries out networking actions for preparing optimally to the commercialisation of the spin-OLED technology developed in the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/692448
Start date: 01-01-2016
End date: 30-06-2017
Total budget - Public funding: 150 000,00 Euro - 150 000,00 Euro
Cordis data

Original description

Organic Light-Emitting Diode (OLED) is an attractive solution for displays and lighting due to its low cost of production. The adoption of OLED technology in televisions, smartphones, and increasing number of applications in wearables, transportation and lighting are contributing to the growth of this market. OLED technology offers sharper images, better contrast and crisp colours than any existing display technology.
In lighting applications the efficiency of serial production OLEDs cannot currently reach the efficiency of fluorescent lamps and Light-Emitting Diodes (LED). Also, OLEDs are only marginally more energy efficient than the best LCD displays.
In the spin-LED/OLED concept, the electrons injected into and from the light-emitting species have their spin predetermined; therefore, the formation of “dark”, non-emitting triplet states is avoided. Based on our research on the chiral induced spin selectivity (CISS) effect, we propose to develop chiral organic semiconductor structures that provide a universal means to control the spin state of injected electrons and holes in OLEDs. This effect can increase the energy efficiency of the devices by a factor of four.
In this proof-of-concept project we will develop, manufacture and test state-of-the-art chiral molecules based spin-LED/OLED structures, which are expected to improve the energy efficiency of LEDs and OLEDs, a critical issue in view of the desire to reduce the energy consumption of electronic devices. The efficiency is expected to improve by a factor of four. The project also takes pre-commercialisation measures and carries out networking actions for preparing optimally to the commercialisation of the spin-OLED technology developed in the project.

Status

CLOSED

Call topic

ERC-PoC-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-PoC
ERC-PoC-2015 ERC Proof of Concept Grant