Summary
A major problem in dental care restorations is bacterial infiltration. Bacteria between the tooth and the restoration is a potential cause of postoperative sensitivity, pulp inflammation, and necrosis. In orthodontics, the formation of biofilms during treatment bears the risk of enamel decalcification, cavity formation, and gingival inflammation due to the fact that colonized bacteria are extremely hard to remove in presence of orthodontic appliances. Another related problem is that the current fabrication of dental restorations and braces is labor intensive, requiring highly skilled technicians. Recently, steps have been taken to change the traditional workflow and introduce 3D printing (3DP) technology in this field. 3DP enables a more patient specific way of working, increasing the quality of dental care on the one hand and reducing the costs on the other hand. To address both problems, a highly innovative 3DP antimicrobial polymer system for applications in dentistry and orthodontics will be developed in this proposal. Since the materials will be in contact to or incorporated into the body, attention needs to be paid to render these systems non-toxic and biocompatible. Second, the commercial, IPR and business opportunities of these novel materials will be investigated.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/665587 |
Start date: | 01-04-2016 |
End date: | 30-09-2017 |
Total budget - Public funding: | 150 000,00 Euro - 150 000,00 Euro |
Cordis data
Original description
A major problem in dental care restorations is bacterial infiltration. Bacteria between the tooth and the restoration is a potential cause of postoperative sensitivity, pulp inflammation, and necrosis. In orthodontics, the formation of biofilms during treatment bears the risk of enamel decalcification, cavity formation, and gingival inflammation due to the fact that colonized bacteria are extremely hard to remove in presence of orthodontic appliances. Another related problem is that the current fabrication of dental restorations and braces is labor intensive, requiring highly skilled technicians. Recently, steps have been taken to change the traditional workflow and introduce 3D printing (3DP) technology in this field. 3DP enables a more patient specific way of working, increasing the quality of dental care on the one hand and reducing the costs on the other hand. To address both problems, a highly innovative 3DP antimicrobial polymer system for applications in dentistry and orthodontics will be developed in this proposal. Since the materials will be in contact to or incorporated into the body, attention needs to be paid to render these systems non-toxic and biocompatible. Second, the commercial, IPR and business opportunities of these novel materials will be investigated.Status
CLOSEDCall topic
ERC-PoC-2014Update Date
27-04-2024
Images
No images available.
Geographical location(s)