Summary
The problem: Cancer metastases are responsible for 90% of cancer-associated deaths. Circulating tumour cells (CTCs) that enter the blood stream on their way to potential metastatic sites are of obvious interest to evaluate correctly patient treatment and therefore influence outcome. CTCs have been identified in bladder, gastric, prostate, lung, breast and colon cancer. The only FDA approved CTCs detection system is Veridex’ CellSearch, which detects only epithelial cancer cells using antibody labelling. Recent evidence showed that non-epithelial cancer cells, which are not detected by CellSearch, are of critical importance in cancer progression.
The idea: Our CTC detection method is based, instead of on antibody labelling, on metabolic features of cancer cells, thus providing potential for detecting both epithelial and mesenchymal cancer cells. Cancer cells induce environmental changes; e.g. in aerobic conditions most cancer cells display a high rate of glycolysis with lactate production in the cytosol, known as the Warburg effect. By separating cells into micro-droplets of pico-liter volume using micro-fluidic water-in-oil emulsions and by characterising the microenvironment surrounding them, CTCs are detected by probing for environmental changes using pH sensitive dyes or enzymatic lactate assays. Our inexpensive diagnostic method provides a way to count and isolate CTCs without any labelling while maintaining cells alive and intact for further studies.
The project: “A CACTUS” is meant to assess the feasibility of commercialising the developed method for counting and sorting CTCs and develop a proper commercialisation strategy. The final goal of this project is to develop a proposition package consisting of technical proof of concept, the business proposition and strategy and an IP portfolio and strategy. This information will be presented in an attractive business plan that will be proposed to potential investors.
The idea: Our CTC detection method is based, instead of on antibody labelling, on metabolic features of cancer cells, thus providing potential for detecting both epithelial and mesenchymal cancer cells. Cancer cells induce environmental changes; e.g. in aerobic conditions most cancer cells display a high rate of glycolysis with lactate production in the cytosol, known as the Warburg effect. By separating cells into micro-droplets of pico-liter volume using micro-fluidic water-in-oil emulsions and by characterising the microenvironment surrounding them, CTCs are detected by probing for environmental changes using pH sensitive dyes or enzymatic lactate assays. Our inexpensive diagnostic method provides a way to count and isolate CTCs without any labelling while maintaining cells alive and intact for further studies.
The project: “A CACTUS” is meant to assess the feasibility of commercialising the developed method for counting and sorting CTCs and develop a proper commercialisation strategy. The final goal of this project is to develop a proposition package consisting of technical proof of concept, the business proposition and strategy and an IP portfolio and strategy. This information will be presented in an attractive business plan that will be proposed to potential investors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/640955 |
Start date: | 01-04-2015 |
End date: | 30-09-2016 |
Total budget - Public funding: | 149 875,00 Euro - 149 875,00 Euro |
Cordis data
Original description
The problem: Cancer metastases are responsible for 90% of cancer-associated deaths. Circulating tumour cells (CTCs) that enter the blood stream on their way to potential metastatic sites are of obvious interest to evaluate correctly patient treatment and therefore influence outcome. CTCs have been identified in bladder, gastric, prostate, lung, breast and colon cancer. The only FDA approved CTCs detection system is Veridex’ CellSearch, which detects only epithelial cancer cells using antibody labelling. Recent evidence showed that non-epithelial cancer cells, which are not detected by CellSearch, are of critical importance in cancer progression.The idea: Our CTC detection method is based, instead of on antibody labelling, on metabolic features of cancer cells, thus providing potential for detecting both epithelial and mesenchymal cancer cells. Cancer cells induce environmental changes; e.g. in aerobic conditions most cancer cells display a high rate of glycolysis with lactate production in the cytosol, known as the Warburg effect. By separating cells into micro-droplets of pico-liter volume using micro-fluidic water-in-oil emulsions and by characterising the microenvironment surrounding them, CTCs are detected by probing for environmental changes using pH sensitive dyes or enzymatic lactate assays. Our inexpensive diagnostic method provides a way to count and isolate CTCs without any labelling while maintaining cells alive and intact for further studies.
The project: “A CACTUS” is meant to assess the feasibility of commercialising the developed method for counting and sorting CTCs and develop a proper commercialisation strategy. The final goal of this project is to develop a proposition package consisting of technical proof of concept, the business proposition and strategy and an IP portfolio and strategy. This information will be presented in an attractive business plan that will be proposed to potential investors.
Status
CLOSEDCall topic
ERC-PoC-2014Update Date
27-04-2024
Images
No images available.
Geographical location(s)