evolSingleCellGRN | Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Summary
Cell types in development arise from precise patterns of gene expression driven by differential usage of DNA regulatory elements. Mutations affecting these elements, or proteins binding them, are major contributors to disease and underlie the evolution of new morphologies. To better understand these elements and how they evolve, I introduce a set of single-cell RNA and ATAC-Seq sequencing technologies that: A) Identify tissue-specific regulatory elements and expression profiles by interrogating individual cells, B) Allow for a precise read-out of developmental responses to mutation and perturbation, including cell-fate re-specification, C) Lead to the development of a regulatory-information based concept of homology that will be used to understand developmental evolution. The research makes use of sea urchins. The well-annotated sea urchin regulatory network, a detailed understanding of inductive interactions in early development, and an active body of evolutionary research justify this choice. Using single-cell ATAC-Seq and a new method for resolving single-cell, nascent transcripts, I will build a detailed atlas of sea urchin development and use this atlas to understand how regulatory landscapes change during specification and how they evolve between closely related species. I will also investigate, at single-cell resolution, how larval skeletal cells are regenerated following the loss of a cell lineage that mirrors euechinoid evolution. To better understand the origins of cell types in sea urchins, I will characterize embryos of the cnidarian Nematostella, using shared regulatory sites to define cell types which I will compare to urchins and my previous work in Drosophila. The work will generate single-cell methods for non-traditional model systems and help to resolve the processes by which, and the paths along which, development evolves.
Results, demos, etc. Show all and search (1)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/805072
Start date: 01-02-2019
End date: 31-01-2024
Total budget - Public funding: 1 499 900,00 Euro - 1 499 900,00 Euro
Cordis data

Original description

Cell types in development arise from precise patterns of gene expression driven by differential usage of DNA regulatory elements. Mutations affecting these elements, or proteins binding them, are major contributors to disease and underlie the evolution of new morphologies. To better understand these elements and how they evolve, I introduce a set of single-cell RNA and ATAC-Seq sequencing technologies that: A) Identify tissue-specific regulatory elements and expression profiles by interrogating individual cells, B) Allow for a precise read-out of developmental responses to mutation and perturbation, including cell-fate re-specification, C) Lead to the development of a regulatory-information based concept of homology that will be used to understand developmental evolution. The research makes use of sea urchins. The well-annotated sea urchin regulatory network, a detailed understanding of inductive interactions in early development, and an active body of evolutionary research justify this choice. Using single-cell ATAC-Seq and a new method for resolving single-cell, nascent transcripts, I will build a detailed atlas of sea urchin development and use this atlas to understand how regulatory landscapes change during specification and how they evolve between closely related species. I will also investigate, at single-cell resolution, how larval skeletal cells are regenerated following the loss of a cell lineage that mirrors euechinoid evolution. To better understand the origins of cell types in sea urchins, I will characterize embryos of the cnidarian Nematostella, using shared regulatory sites to define cell types which I will compare to urchins and my previous work in Drosophila. The work will generate single-cell methods for non-traditional model systems and help to resolve the processes by which, and the paths along which, development evolves.

Status

TERMINATED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)