Summary
The major goal of the project is to develop a novel type of an electrochemical capacitor with high specific power (up to 5 kW/kg) and energy (up to 20 Wh/kg) preserved along at least 50 000 cycles. Thus, completion of the project will result in remarkable enhancement of specific energy, power and life time of modern electrochemical capacitors. Advanced electrochemical testing (galvanostatic cycling with constant power loads, electrochemical impedance spectroscopy, accelerated aging and kinetic tests) will be accompanied by materials design and detailed characterization. Moreover, the project aims at the implementation of novel concepts of the electrolytes and designing of new operando technique for capacitor characterization. All these efforts aim at the development of sustainable and efficient energy conversion and storage system.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/759603 |
Start date: | 01-10-2017 |
End date: | 30-09-2023 |
Total budget - Public funding: | 1 385 000,00 Euro - 1 385 000,00 Euro |
Cordis data
Original description
The major goal of the project is to develop a novel type of an electrochemical capacitor with high specific power (up to 5 kW/kg) and energy (up to 20 Wh/kg) preserved along at least 50 000 cycles. Thus, completion of the project will result in remarkable enhancement of specific energy, power and life time of modern electrochemical capacitors. Advanced electrochemical testing (galvanostatic cycling with constant power loads, electrochemical impedance spectroscopy, accelerated aging and kinetic tests) will be accompanied by materials design and detailed characterization. Moreover, the project aims at the implementation of novel concepts of the electrolytes and designing of new operando technique for capacitor characterization. All these efforts aim at the development of sustainable and efficient energy conversion and storage system.Status
CLOSEDCall topic
ERC-2017-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)