INJURMET | Impact of tissue injury induced by diagnostic biopsies and surgery on cancer metastasis

Summary
Background: Blood-borne metastasis of malignant cells from the primary lesion to distant organs is the major cause of cancer-related death. Most cancer patients face tissue injury at initial diagnosis when tumor tissue is obtained by biopsies to secure the diagnosis of cancer and at primary surgery required to remove the primary tumor.

Objectives: We will evaluate whether tissue injury contributes to a significant blood-borne dissemination of viable tumor cells, which is one of the most under-investigated areas in cancer research. We will focus on the two most frequent malignancies in women (breast cancer) and men (prostate cancer) that occur in the in European Union with incidence rates of 139.5 and 139.0 cases per 100,000, respectively. The current project will study the extent of the release of tumor cells into the blood circulation after needle tissue biopsies and primary surgery, the characteristics of the released tumor cells and the contribution of this release to cancer progression. Moreover, we will assess therapeutic strategies to block extravasation of circulating tumor cells (CTCs) to distant sites. As experimental approach, we will apply novel technologies for capturing CTCs and for determining their molecular characteristics in cancer patients as well as experimental models that are able to determine the functional properties of CTCs.

Impact: The results will have an important impact on medical practice. If biopsies would contribute to tumor progression, it might be a strong driving force for the development of better imaging modalities or “liquid biopsy” assays of peripheral blood that can diagnose cancer through the detection of CTCs or tumor cell products such as circulating nucleic acids (DNA, microRNA), exosomes or tumor-educated platelets. Moreover, short-term pharmacologic inhibition of extravasation might be able to prevent the extravasation of injury-released CTCs and reduce the risk of metastasis.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/834974
Start date: 01-08-2019
End date: 31-07-2025
Total budget - Public funding: 2 499 985,00 Euro - 2 499 985,00 Euro
Cordis data

Original description

Background: Blood-borne metastasis of malignant cells from the primary lesion to distant organs is the major cause of cancer-related death. Most cancer patients face tissue injury at initial diagnosis when tumor tissue is obtained by biopsies to secure the diagnosis of cancer and at primary surgery required to remove the primary tumor.

Objectives: We will evaluate whether tissue injury contributes to a significant blood-borne dissemination of viable tumor cells, which is one of the most under-investigated areas in cancer research. We will focus on the two most frequent malignancies in women (breast cancer) and men (prostate cancer) that occur in the in European Union with incidence rates of 139.5 and 139.0 cases per 100,000, respectively. The current project will study the extent of the release of tumor cells into the blood circulation after needle tissue biopsies and primary surgery, the characteristics of the released tumor cells and the contribution of this release to cancer progression. Moreover, we will assess therapeutic strategies to block extravasation of circulating tumor cells (CTCs) to distant sites. As experimental approach, we will apply novel technologies for capturing CTCs and for determining their molecular characteristics in cancer patients as well as experimental models that are able to determine the functional properties of CTCs.

Impact: The results will have an important impact on medical practice. If biopsies would contribute to tumor progression, it might be a strong driving force for the development of better imaging modalities or “liquid biopsy” assays of peripheral blood that can diagnose cancer through the detection of CTCs or tumor cell products such as circulating nucleic acids (DNA, microRNA), exosomes or tumor-educated platelets. Moreover, short-term pharmacologic inhibition of extravasation might be able to prevent the extravasation of injury-released CTCs and reduce the risk of metastasis.

Status

SIGNED

Call topic

ERC-2018-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-ADG