Summary
Despite the many advantages of microchemical systems and their successful applications in chemical
engineering research, one major drawback greatly limiting their use is their susceptibility to channel clogging
for flows containing particulate matter. Hence, the aim of the proposed research is to overcome the challenge
of clogging in microfluidic devices and to design microfluidic systems that can tolerate particulate matter
and synthesize solid materials according to their specifications (e.g. size, purity, morphology). To reach this
goal, we apply a combined experimental and theoretical approach, in which the experimental results will lead
to model development reflecting the particle formation and interaction kinetics and their coupling to the
hydrodynamics. The novel concept of the proposal is to devise engineering strategies to handle the
particulate matter inside the reactor depending on if the solid material is i) an unwanted and insoluble by-product
of a reaction, or ii) the target compound (e.g. nanoparticle synthesis or crystallization of organic
molecules). Depending on the case we will design different ultrasound application strategies and introduce
nucleation sites to control the location of particle formation within the microchannel. This project will
provide fundamental insight into the physico-chemical phenomena that result in particle formation, growth
and agglomeration processes in continuous flow microdevices, and will provide a theoretical tool for the
prediction of the dynamics of particle-particle, particle-wall and particle-fluid interactions, leading to
innovative microreactor designs.
engineering research, one major drawback greatly limiting their use is their susceptibility to channel clogging
for flows containing particulate matter. Hence, the aim of the proposed research is to overcome the challenge
of clogging in microfluidic devices and to design microfluidic systems that can tolerate particulate matter
and synthesize solid materials according to their specifications (e.g. size, purity, morphology). To reach this
goal, we apply a combined experimental and theoretical approach, in which the experimental results will lead
to model development reflecting the particle formation and interaction kinetics and their coupling to the
hydrodynamics. The novel concept of the proposal is to devise engineering strategies to handle the
particulate matter inside the reactor depending on if the solid material is i) an unwanted and insoluble by-product
of a reaction, or ii) the target compound (e.g. nanoparticle synthesis or crystallization of organic
molecules). Depending on the case we will design different ultrasound application strategies and introduce
nucleation sites to control the location of particle formation within the microchannel. This project will
provide fundamental insight into the physico-chemical phenomena that result in particle formation, growth
and agglomeration processes in continuous flow microdevices, and will provide a theoretical tool for the
prediction of the dynamics of particle-particle, particle-wall and particle-fluid interactions, leading to
innovative microreactor designs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/677169 |
Start date: | 01-03-2016 |
End date: | 28-02-2021 |
Total budget - Public funding: | 1 500 000,00 Euro - 1 500 000,00 Euro |
Cordis data
Original description
Despite the many advantages of microchemical systems and their successful applications in chemicalengineering research, one major drawback greatly limiting their use is their susceptibility to channel clogging
for flows containing particulate matter. Hence, the aim of the proposed research is to overcome the challenge
of clogging in microfluidic devices and to design microfluidic systems that can tolerate particulate matter
and synthesize solid materials according to their specifications (e.g. size, purity, morphology). To reach this
goal, we apply a combined experimental and theoretical approach, in which the experimental results will lead
to model development reflecting the particle formation and interaction kinetics and their coupling to the
hydrodynamics. The novel concept of the proposal is to devise engineering strategies to handle the
particulate matter inside the reactor depending on if the solid material is i) an unwanted and insoluble by-product
of a reaction, or ii) the target compound (e.g. nanoparticle synthesis or crystallization of organic
molecules). Depending on the case we will design different ultrasound application strategies and introduce
nucleation sites to control the location of particle formation within the microchannel. This project will
provide fundamental insight into the physico-chemical phenomena that result in particle formation, growth
and agglomeration processes in continuous flow microdevices, and will provide a theoretical tool for the
prediction of the dynamics of particle-particle, particle-wall and particle-fluid interactions, leading to
innovative microreactor designs.
Status
CLOSEDCall topic
ERC-StG-2015Update Date
27-04-2024
Images
No images available.
Geographical location(s)