CASSANDRA | Accelerating mass loss of Greenland: firn and the shifting runoff limit

Summary
Meltwater running off the flanks of the Greenland ice sheet contributes roughly 60% to its mass loss, the rest being due to calving. Only meltwater originating from below the elevation of the runoff limit leaves the ice sheet, contributing to mass loss; melt at higher elevations refreezes in the porous firn and does not drive mass loss. Therefore any shift in the runoff limit modifies mass loss and subsequent sea level rise. New evidence shows surface runoff at increasingly high elevations, outpacing the rate at which the equilibrium line elevation rises. This research proposal focuses on the runoff limit as a powerful yet poorly understood modulator of Greenland mass balance. We will track the runoff limit over the full satellite era using two of the largest and oldest remote sensing archives, Landsat and the Advanced Very High Resolution Radiometer (AVHRR). We will establish time series of the runoff limit for all regions of Greenland to identify the mechanisms driving fluctuations in the runoff limit. This newly gained process understanding and a wealth of in-situ measurements will then be used to build firn hydrology models capable of simulating runoff and the associated runoff limit over time. Eventually, the firn hydrology models will be applied to reconcile estimates of Greenland past, present and future mass balance. Covering the entire satellite era and all of Greenland, the focus on the runoff limit will constitute a paradigm shift leading to major advance in our understanding of how vulnerable the surface of the ice sheet reacts to climate change and how the changing surface impacts runoff and thus Greenland's role in the global sea level budget.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/818994
Start date: 01-05-2019
End date: 31-10-2024
Total budget - Public funding: 1 989 181,00 Euro - 1 989 181,00 Euro
Cordis data

Original description

Meltwater running off the flanks of the Greenland ice sheet contributes roughly 60% to its mass loss, the rest being due to calving. Only meltwater originating from below the elevation of the runoff limit leaves the ice sheet, contributing to mass loss; melt at higher elevations refreezes in the porous firn and does not drive mass loss. Therefore any shift in the runoff limit modifies mass loss and subsequent sea level rise. New evidence shows surface runoff at increasingly high elevations, outpacing the rate at which the equilibrium line elevation rises. This research proposal focuses on the runoff limit as a powerful yet poorly understood modulator of Greenland mass balance. We will track the runoff limit over the full satellite era using two of the largest and oldest remote sensing archives, Landsat and the Advanced Very High Resolution Radiometer (AVHRR). We will establish time series of the runoff limit for all regions of Greenland to identify the mechanisms driving fluctuations in the runoff limit. This newly gained process understanding and a wealth of in-situ measurements will then be used to build firn hydrology models capable of simulating runoff and the associated runoff limit over time. Eventually, the firn hydrology models will be applied to reconcile estimates of Greenland past, present and future mass balance. Covering the entire satellite era and all of Greenland, the focus on the runoff limit will constitute a paradigm shift leading to major advance in our understanding of how vulnerable the surface of the ice sheet reacts to climate change and how the changing surface impacts runoff and thus Greenland's role in the global sea level budget.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG