PHOTOPARS | Development of a prototype clinical photoacoustic scanner for use in plastic and reconstructive surgery

Summary
Plastic and reconstructive surgical procedures provide a means of reconstructing tissues following damage due to cancer, trauma, burns and infections. An important example is flap surgery which involves transferring skin and the underlying tissues from one part of the body to another; for example, in the DIEP flap breast reconstruction procedure, skin and tissue from the abdomen is removed and implanted in the breast. For a successful repair, it is essential that the transplanted tissue develops an adequate blood supply. Failure to do so results in tissue death (necrosis) which can lead to complications such as infection, delayed wound healing and disfigurement due to scarring with attendant psychological trauma. This proposal seeks to address this by developing and constructing a prototype clinical imaging instrument based on a novel photoacoustic technology which can provide highly detailed three-dimensional maps of blood vessels. This technology offers the prospect of reducing the number of complications and the need for repeat procedures with consequent benefits in terms of reduced patient trauma and lower healthcare provider costs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/875669
Start date: 01-02-2020
End date: 31-07-2021
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Plastic and reconstructive surgical procedures provide a means of reconstructing tissues following damage due to cancer, trauma, burns and infections. An important example is flap surgery which involves transferring skin and the underlying tissues from one part of the body to another; for example, in the DIEP flap breast reconstruction procedure, skin and tissue from the abdomen is removed and implanted in the breast. For a successful repair, it is essential that the transplanted tissue develops an adequate blood supply. Failure to do so results in tissue death (necrosis) which can lead to complications such as infection, delayed wound healing and disfigurement due to scarring with attendant psychological trauma. This proposal seeks to address this by developing and constructing a prototype clinical imaging instrument based on a novel photoacoustic technology which can provide highly detailed three-dimensional maps of blood vessels. This technology offers the prospect of reducing the number of complications and the need for repeat procedures with consequent benefits in terms of reduced patient trauma and lower healthcare provider costs.

Status

CLOSED

Call topic

ERC-2019-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-PoC