Human Decisions | The Neural Determinants of Perceptual Decision Making in the Human Brain

Summary
How do we make reliable decisions given sensory information that is often weak or ambiguous? Current theories center on a brain mechanism whereby sensory evidence is integrated over time into a “decision variable” which triggers the appropriate action upon reaching a criterion. Neural signals fitting this role have been identified in monkey electrophysiology but efforts to study the neural dynamics underpinning human decision making have been hampered by technical challenges associated with non-invasive recording. This proposal builds on a recent paradigm breakthrough made by the applicant that enables parallel tracking of discrete neural signals that can be unambiguously linked to the three key information processing stages necessary for simple perceptual decisions: sensory encoding, decision formation and motor preparation. Chief among these is a freely-evolving decision variable signal which builds at an evidence-dependent rate up to an action-triggering threshold and precisely determines the timing and accuracy of perceptual reports at the single-trial level. This provides an unprecedented neurophysiological window onto the distinct parameters of the human decision process such that the underlying mechanisms of several major behavioral phenomena can finally be investigated. This proposal seeks to develop a systems-level understanding of perceptual decision making in the human brain by tackling three core questions: 1) what are the neural adaptations that allow us to deal with speed pressure and variations in the reliability of the physically presented evidence? 2) What neural mechanism determines our subjective confidence in a decision? and 3) How does aging impact on the distinct neural components underpinning perceptual decision making? Each of the experiments described in this proposal will definitively test key predictions from prominent theoretical models using a combination of temporally precise neurophysiological measurement and psychophysical modelling.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/638289
Start date: 01-05-2015
End date: 30-04-2020
Total budget - Public funding: 1 382 642,50 Euro - 1 382 642,00 Euro
Cordis data

Original description

How do we make reliable decisions given sensory information that is often weak or ambiguous? Current theories center on a brain mechanism whereby sensory evidence is integrated over time into a “decision variable” which triggers the appropriate action upon reaching a criterion. Neural signals fitting this role have been identified in monkey electrophysiology but efforts to study the neural dynamics underpinning human decision making have been hampered by technical challenges associated with non-invasive recording. This proposal builds on a recent paradigm breakthrough made by the applicant that enables parallel tracking of discrete neural signals that can be unambiguously linked to the three key information processing stages necessary for simple perceptual decisions: sensory encoding, decision formation and motor preparation. Chief among these is a freely-evolving decision variable signal which builds at an evidence-dependent rate up to an action-triggering threshold and precisely determines the timing and accuracy of perceptual reports at the single-trial level. This provides an unprecedented neurophysiological window onto the distinct parameters of the human decision process such that the underlying mechanisms of several major behavioral phenomena can finally be investigated. This proposal seeks to develop a systems-level understanding of perceptual decision making in the human brain by tackling three core questions: 1) what are the neural adaptations that allow us to deal with speed pressure and variations in the reliability of the physically presented evidence? 2) What neural mechanism determines our subjective confidence in a decision? and 3) How does aging impact on the distinct neural components underpinning perceptual decision making? Each of the experiments described in this proposal will definitively test key predictions from prominent theoretical models using a combination of temporally precise neurophysiological measurement and psychophysical modelling.

Status

CLOSED

Call topic

ERC-StG-2014

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2014
ERC-2014-STG
ERC-StG-2014 ERC Starting Grant