MAGnUMplus | Optimal urban traffic routing by broadcasting avoidance maps

Summary
The PoC aims to develop a prototype for an optimal route guidance system that improves traffic conditions in urban areas. Urban traffic management at large-scale is very challenging but may lead to significant travel time savings by better-distributing drivers among the network. Existing navigation apps or routing systems provide the shortest-path in time to users resulting in the network user equilibrium. However, traffic engineers know that total travel times may be reduced by 10 to 30% if user routes comply with the system optimum. There is no actual traffic management system that can achieve such a goal because of computational (determining the optimal route for all current users in NP-hard), privacy (optimality requires that all users share their destination with a centralized controller) and compliance issues (users may not follow routing instructions).
The optimal route guidance system we have designed within the MAGnUM project can quickly solve the two first issues. A centralized controller produces real-time avoidance maps, i.e., the definition of how many users should avoid each subsection of the road network to alleviate congestion in this area. Such maps are derived by monitoring of overall traffic conditions. Each user transforms this information into individual route guidance through its navigation system. This privacy is guaranteed by design as the users share no information with the controller but only take benefit from avoidance maps.
The PoC will not only develop the prototype but also implement the system in the field to run experiments over three months. The experiments aim to (i) test the proper system functioning, (ii) derive optimal controller settings in particular concerning the network partitioning, and (iii) investigate users’ reactions to the guidance and determine the natural compliance rate. All the studies will permit us to assess the potential of the full system better and prepare the next steps before introduction to the market.
Results, demos, etc. Show all and search (2)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/963840
Start date: 01-12-2020
End date: 31-05-2022
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

The PoC aims to develop a prototype for an optimal route guidance system that improves traffic conditions in urban areas. Urban traffic management at large-scale is very challenging but may lead to significant travel time savings by better-distributing drivers among the network. Existing navigation apps or routing systems provide the shortest-path in time to users resulting in the network user equilibrium. However, traffic engineers know that total travel times may be reduced by 10 to 30% if user routes comply with the system optimum. There is no actual traffic management system that can achieve such a goal because of computational (determining the optimal route for all current users in NP-hard), privacy (optimality requires that all users share their destination with a centralized controller) and compliance issues (users may not follow routing instructions).
The optimal route guidance system we have designed within the MAGnUM project can quickly solve the two first issues. A centralized controller produces real-time avoidance maps, i.e., the definition of how many users should avoid each subsection of the road network to alleviate congestion in this area. Such maps are derived by monitoring of overall traffic conditions. Each user transforms this information into individual route guidance through its navigation system. This privacy is guaranteed by design as the users share no information with the controller but only take benefit from avoidance maps.
The PoC will not only develop the prototype but also implement the system in the field to run experiments over three months. The experiments aim to (i) test the proper system functioning, (ii) derive optimal controller settings in particular concerning the network partitioning, and (iii) investigate users’ reactions to the guidance and determine the natural compliance rate. All the studies will permit us to assess the potential of the full system better and prepare the next steps before introduction to the market.

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)